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1CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse, France
2Institute of Structure Physics, Technische Universität Dresden, 01062 Dresden, Germany

3Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
(Received 24 July 2012; revised manuscript received 22 April 2013; published 10 July 2013)

The distribution and movement of charge is fundamental to many physical phenomena, particularly for

applications involving nanoparticles, nanostructures, and electronic devices. However, there are very few

ways of quantifying charge at the necessary length scale. Here, we show that aberration-corrected electron

holography is capable of counting the charge on individual nanoparticles to a precision of one elementary

unit of charge. We present a method that measures charges within predefined contours by directly

applying Gauss’s law at the nanoscale. We perform a statistical analysis to reveal the relationship between

the size of the contours and the precision of the charge measurement and present strategies to optimize the

spatial and signal resolution for the presented method.
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Introduction.—A number of scanning probe micros-
copy (SPM) techniques have been developed to detect
and even manipulate single electrons at the nanoscale,
i.e., single-electron transistor scanning electrometer
(SETSE) [1], scanned capacitance microscopy [2],
charge sensing by atomic force microscopy (AFM) [3],
or single-electron electrostatic force microscopy
(e-EFM) [4,5]. Static electric fields and charges with
100-nanometer spatial resolution and a charge sensitivity
of a small fraction of an electron can be achieved by
SETSE [1]. The electrostatic force resulting from single
electrons tunneling into and out of quantum dots can
be detected by AFM or e-EFM [3,5]. However, SPM
techniques also suffer from drawbacks: measurements
are optimized for particular electrical boundary condi-
tions (e.g., conducting objects on insulating surfaces for
AFM) and ultrahigh vacuum conditions, the measured
forces and currents are highly nonlinear with respect to
the charge state and scanning the specimen introduces
artifacts such as distortions.

Transmission electron microscopy (TEM) [6], and, in
particular, off-axis electron holography (EH) [7–9], has
long been used to study charges and charge distributions
on nanoparticles and nanostructures. The technique has
notably less sensitivity than SPM and one must consider
that the electron beam can locally modify the initial charge
distribution [10,11]. However, EH has the advantage that
the phase measured in the electron hologram is linearly
related to the electrostatic potential experienced by the fast
electron and can be used to quantify electrostatic fields,
for example, in doped regions of transistors [12,13].
Furthermore, the effect of electron-beam induced charging
plays an important role for investigating a wide range of
materials in TEM, e.g., semiconductors [10,14–17]; i.e., an
accurate electron holographical characterization of beam
induced charges itself is highly beneficial.

In general, previous EH measurements were based on
fitting models for the electrostatic potential to the EH
phase. Such indirect methods suffer from the usual
limitations that a priori knowledge is required to
construct the models. Charge distributions need to be
postulated beyond the field of view because their
long-range electrostatic fields may modify the reference
wave required within the EH experimental setup (see
Fig. 1) [18,19]. The measurement is therefore nonunique.
Nevertheless, a charge of about 100 electron charges (qe)
was recently quantified in the well-defined system of
isolated latex spheres [20].

FIG. 1 (color online). Observing charge on nanoparticles.
(a) Holographic setup, (b) amplified cosinus contour map
(13�) of the reconstructed phase of a charged MgO particle
and (c) false color representation of the reconstructed phase with
contours (every 0.3 rad).
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Here, we present a direct method of measuring charge
from electron holograms that overcomes these problems.
The method follows the work of Beleggia et al. [21] and is
based on applying Gauss’s Law at the nanoscale. In com-
bination with state-of-the-art off-axis aberration-corrected
electron holography we demonstrate the possibility of
directly measuring, for isolated nanoparticles, their total
charge with a unprecedented precision of about one ele-
mentary charge (� 1qe).

Theoretical basis.—The basic geometry of off-axis EH
applied to electrostatic fields is illustrated in Fig. 1(a). We
will denote 3D vectors by r ¼ ðx; y; zÞT and 2D vectors in
the object (and conjugated) xy planes by R ¼ ðx; yÞT in
the following. Two coherent electron waves c l;rðRÞ ¼
Al;rðRÞ expði�l;rðRÞÞ passing on the left and right side of

a filament (biprism) can be made to overlap by applying a
suitable voltage to the biprism, thereby creating a sinusoi-
dal interference pattern with spatial wave vector K0 [22]:

IðRÞ ¼ jAlðRÞj2 þ jArðRÞj2
þ 2AlðRÞArðRÞ cosðK0 �Rþ�lðRÞ ��rðRÞÞ:

(1)

The phase difference between the two beams �ðRÞ ¼
�lðRÞ ��rðRÞ is then extracted by Fourier filtering (see
below). Within the phase object approximation [18,19,23],
which is valid for the slowly varying or weak electrostatic
potentials investigated here, the phase of the reconstructed
wave is proportional to the specimen potential integrated
along the incident beam direction:

’ðRÞ ¼ CE
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where CE is a constant that only depends on the electron
energy and universal constants (CE ¼ 0:0073 rad=ðV � nmÞ
for an accelerating voltage of 200 keV) and d ¼ ðD; 0ÞT
denotes the lateral shift between the two wave fronts
(see Fig. 1). Here and in the following, we can safely neglect
magnetic contributions because they do not contribute to
the following charge determination based on Gauss law
(divB ¼ 0). They can be, however, revealed by a different
integration scheme [24].

According to the superposition principle we can now
separate the electrostatic potential and the resulting phase
into two parts: one stemming from the neutral crystal
denoted by ‘‘cr’’ (which corresponds to the mean inner
potential—MIP [25]), and the other arising solely from
additional charges denoted by Q:

�ðRÞ ¼ �crðRÞ þ�QðRÞ: (3)

First, let us analyze the phase image of the charge,
putting to aside for the moment the MIP contribution.
The total charge Q within a chosen region can be uniquely
retrieved by integrating the 2D Laplace operator applied to
the phase provided that the reference region does not
contain any charges (

RRR
�ðr� ðd=2ÞÞd3r ¼ 0):
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Here, the crucial point was adding @2V=@2z on the
second line, which integrates to zero if the electric field
in the z direction vanishes at infinity becauseRð@2V=@2zÞ ¼ EZj1�1. As a further refinement, we use
the equivalence with a contour integral (line parameter s,
outward normal N) in two dimensions:

ZZ
�R’QðRÞd2R ¼

I
C
rR’QðRðsÞÞ �NðRðsÞÞds; (5)

to obtain a more suitable relationship for the charge

Q ¼ � "0
CE

I
C
rR’QðRðsÞÞ � NðRðsÞÞds; (6)

which suppresses problems arising from singularities
appearing in phase derivatives close to charge centers
and uses only a simple phase gradient. The power of
Gauss’s law is that the result is independent of any par-
ticularly contour C, and therefore by choosing suitable
contours enclosing the region of interest, it is possible to
obtain several values for the enclosed charge, whose
statistical processing allows for a significant reduction of
errors and an estimation of the precision. Furthermore, the
method provides direct access to the total charge enclosed
by a given contour without assuming further details about
neither the position of the charges within or outside the
field of view nor the material investigated, contrary to a
model-based approach where the whole electrostatic po-
tential has to be computed. The reduction of the estimated
parameter space improves the precision and accuracy of
the obtained charge.
Equation (6) constitutes the basis of our measurement

scheme which we will develop after discussing possible
deviations and artifacts. We first note that the presence of
additional electric fields, or linear phase ramps introduced
by the reconstruction process or from disturbances in the
reference wave [19], will not disturb the charge that is
measured. Neither is the method affected by residual
high frequency aberrations (see Supplemental Material
[26], Suppl. B) if the measured charge is spread over
distances large compared to the spatial resolution of the
holographic reconstruction. (5 nm in our case, a detailed
derivation of that statement is given in the Supplemental
Material [26], Suppl. B). The main limitation is cur-
rently imposed by the limited signal resolution of the
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reconstructed phase and the impact of the potential of the
crystal lattice, which will be discussed next.

Because of the strong interaction of the electron beam
with atomic potentials inhomogeneities in crystal struc-
tures, such as defects, bending, or phase boundaries can
lead to strong reconstructed phase gradients, in particular
under low-index zone axis conditions (dynamic scatter-
ing). Even in the case of a sufficiently homogeneous
structure, where Vcr is uniform within the material and
equal to the mean inner potential [27], the phase image

’crðRÞ ¼ CE

Z tðRÞ

0
VcrðrÞdz � CEVcrtðRÞ

varies with thickness tðRÞ and all such noncharge related
variations can severely hamper the evaluation of contour
integrals within the particles. Here, we adopted three dif-
ferent strategies to suppress their influence when measur-
ing inside particles: First, the MgO cubes analyzed were
oriented into h100i-direction with negligible thickness var-
iations, second, we deliberately chose contours that locally
are parallel to rRtðRÞ at the particle edges, and third, very
large phase gradients not originating from charges have
been suppressed (details are discussed below and in the
Supplemental Material [26], Suppl. B and C).

Methods.—Nanocuboids of MgO of a large variety of
sizes (5–200 nm) have been synthesized by simply burning
pure Mg foil and intercepting the resulting MgO smoke on
a lacey carbon grid [28]. These insulating MgO nanocubes
are electrically charged, or become so under the electron
beam by knockout of secondary electrons. Because of their
well-defined geometry, low-scattering power and large
variety of sizes, these nanocuboids can be considered as
model nano-objects for the study of the electron charge
density. In order to suppress thickness gradients within the
cube, only h100i-oriented cuboids have been considered.

Holograms of MgO nanocuboids were digitally acquired
using a FEI Tecnai-F20 microscope (200 kV) fitted with a
spherical aberration Cs-corrector (CEOS) in a Lorentz
Cs-corrected mode. Holographic reconstruction was per-
formed with the help of Holodark 1.0 (HREM Research
Inc.) a plug-in for Digital MicrographTM (Gatan).
The phase images were obtained by reconstructing the
aberration-corrected holograms using the Fourier method,
where one of the interference terms (side band) is isolated
by applying a low-pass filter which defines the resulting
phase image resolution of 5 nm in our case corresponding
approximately to the resolution of our Lorentz lens.

A dedicated Digital Micrograph software plug-in has
been developed for performing the charge evaluation based
on line integration (see the Supplemental Material [26],
Suppl. C). Following Eq. (6), we employed a set of contour
integrals with increasing size as illustrated in Fig. 2 (see the
Supplemental Material [26], Suppl. C). The rectangular
contours are aligned with respect to the cube edges, cross-
ing them at 90� in such a way as to minimize the influence

of thickness gradients at the particle edges. To further
suppress both the influence of artificially large phase
gradients at thickness discontinuities and possible recon-
struction artifacts, we additionally applied a threshold filter
to remove a very small number (< 5%) of excessive gra-
dients from the line integration (see the Supplemental
Material [26], Suppl. C).
Results.—We first report on the charge measurements in

a 75� 78� 80 nm MgO cuboid [Fig. 2(a), see the
Supplemental Material [26], Suppl. A for dimension
measurement], which is located on top of another cube,
assuring its electrical insulation from the carbon support.
Multiple rectangular contour integrals presented in the
Supplemental Material [26], Suppl. C, all sharing one
side as illustrated in Fig. 2(a), are analyzed to determine
both the charge on the particle and its distribution within

FIG. 2 (color online). Charge measurements. (a) Reconstructed
phase image of particle 1, (b) by contour enclosed charge as a
function of the short side a; the linear fit of contours within the
particle and the constant fit outside of the particle are indicated by
red and black lines, respectively.
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the particle. The final length a is 140 nm for a width b of
about 170 nm. Three different regions are distinguished
when plotting the measured charge versus the length a of
the rectangular contour: Firstly, the enclosed charge
increases rapidly, corresponding to contours which sweep
across the particle; second there are oscillations as the
contours cross the boundary of the particle, and, finally,
the signal plateaus out in the vacuum. The latter region is
most easily interpreted: the total measured charge remains
constant within the contours since the vacuum contains no
charge. The total charge on the particle can be determined
from the average in this region as 49:7� 3qe. Note that the
error was estimated by taking into account correlations due
to the finite resolution of the phase image (see the
Supplemental Material [26], Suppl. C).

In order to quantify which charge sensitivity is achieved
with a single contour integral we created a statistic of
independent contours with a defined enclosed area and
computed their standard deviations (assuming equal
enclosed charges). The result shown in Fig. 3 reveals the
enclosed area (or contour integral resolution) required to
measure a charge integrated from a certain density with
certain precision [e.g., a single contour enclosing 800 nm2

within particle 1 would contain approximately 6:8qe mea-
sured with confidence 68% (1�)]. That indicates that the
small error of the determined total charge on particle 1 stems
from the large statistic of contour integrals in vacuum.

In order to explore the limits of the method, we have
analyzed a smaller particle (16� 23� 28 nm) which was
in electrical contact with the carbon support [Fig. 4(a)].

Here, the total charge was Q ¼ 24:2� 1:2qe, measured
from the contours extending into the vacuum [Fig. 4(b)].
The increase of charges within the particle follows again a
linear slope. We also analyzed a set of contours which start
just inside the particle [dotted line in Fig. 4(b)]. We found
that the total measured charge was only Q ¼ 5:1� 1:2qe,
which demonstrates that very small numbers of charges
can be detected with this method.
In both cases, the first part of the curves fit well with a

linear slope suggesting a homogeneous distribution of
projected charge within the particles. By extending the
linear slopes to the particle edge and comparing the
intersection with the measured total charge one further-
more observes a discrepancy. For instance, this difference

FIG. 3 (color online). Charge error versus spatial resolution:
standard deviation of enclosed charge as function of enclosed
area within particle 1 (red) and vacuum (blue). The dashed line
indicates the enclosed charge assuming a homogeneous projected
charge density � ¼ 8� 1011 cm�2 as measured for particle 1.
The threefold amplification of the standard deviations within the
particle corresponds well to the increased phase noise resulting
from lower contrast and intensity within the particle [28].

FIG. 4 (color online). Charge measurements on a small parti-
cle: (a) reconstructed phase image of particle 2; (b) by contour
enclosed charge as a function of the short side a. The full
(dotted) line corresponds to the straight (dotted) contour. The
linear fit of contours within the particle and the constant fit
outside of the particle are indicated by red and black lines,
respectively.
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is about 10qe for particle 1 [Fig. 2(b)]. That difference
indicates the presence of a surface charge. Indeed, assum-
ing a homogeneous distribution of the charges solely on
the surface of the cube and knowing the sizes of this
particle (75� 78� 80 nm), we can determine using the
linear slope (0:542qe � nm�1) a surface charge of about
1:7510�3qe � nm�2 and a total charge on the lateral face
(75� 80 nm2) of 10:5qe. That agrees with the observed
10qe within the measurement error which indicates that
the total charge is predominantly distributed over the
surface. This result could be explained by surface states
or adsorbates acting as charge traps. Note, furthermore,
that we always measured a positive total charge for all
studied particles (Figs. 2 and 3, and the Supplemental
Material [26]).

In total, we have shown that contour integral evaluation
in holographic phase images facilitates charge measure-
ment with a precision down to one elementary charge. Our
statistical analysis showed how the achievable charge pre-
cision is linked to the area and number of contour integrals
used; i.e., the above noted precision of one qe is based on
evaluating Oð100Þ contours enclosing Oð104 nm2Þ. Thus,
choosing appropriate contours is the key point to inves-
tigate charge distribution at the nanometer scale. The
future challenge will be to increase the limited holographic
contrast V and total image intensity I which both
determine the phase noise �2

� � I�1V�2 [29]. To that

end higher brightness guns and less smearing detectors
are highly useful. At the date of that article such equipment
is already available and we are therefore confident that the
detection of isolated electrons and detailed charge mapping
will be possible in the near future.
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