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We study superflow decay via quantum phase slips in trapped one-dimensional (1D) quantum gases

through dipole oscillations induced by sudden displacement of the trapping potential. We find the relation

between the damping rate of the dipole oscillation G and the phase-slip nucleation rate � as G / �=v,

where v is the flow velocity. This relation allows us to show that damping of 1D Bose gases in optical

lattices, which has been extensively studied in experiment, is due to quantum phase slips. It is also found

that the damping rate versus the flow velocity obeys the scaling formula for an impurity potential even in

the absence of an explicit impurity. We suggest that the damping rate at a finite temperature exhibits a

universal crossover behavior upon changing the flow velocity.
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Systems of optical lattices loaded with ultracold gases
have offered unique opportunities for the studies of corre-
lated many-body physics in one dimension (1D), owing
to their extraordinary controllability and cleanness [1,2].
In typical experiments, one creates an array of 1D gases by
focusing a strong 2D optical lattice to a 3D gas, and
thermal and quantum motions in the transverse direction
are completely frozen. With such 1D quantum gases,
recent experiments have revealed intriguing phenomena
that are in stark contrast to higher dimensions, including
Tonks-Girardeau gases [3,4] and their nonergodic dynam-
ics [5], a possible fermionic superfluid of the Fulde-Ferrell-
Larkin-Ovchinnikov type [6], the pinning Mott transition
[7], and strong suppression of superfluid transport [7–11].

Transport of trapped gases through periodic [7–9,12,13],
single-barrier [14], or random potentials [11,15] has been
often investigated by suddenly displacing a parabolic trap
to induce a dipole oscillation (DO) and observing its damp-
ing. As for the transport of 1D Bose gases, it has been
found that the DO in the presence of an axial optical lattice
[7–9] or random potential [11] is significantly damped
even in the superfluid state. Previous theoretical studies
[16,17] have suggested that this apparent contradiction,
namely dissipative flow in a superfluid, can be interpreted
as a consequence of phase slips (PS), in which thermal or
quantum fluctuations cause the phase of the superfluid
order parameter to unwind, leading to the dissipation of
flow. This interpretation, if affirmative, could provide a
unified view for superfluidity in 1D, given that the concept
of PS is central also to understanding 1D superfluidity and
superconductivity in other condensed-matter systems, such
as liquid 4He in 1D nanopores [18,19], metallic nanowires
[20,21], and single-walled carbon nanotubes [22–24].
Moreover, thanks to the flexible controllability of optical
lattice systems, it would open up new possibilities for more
thorough studies of PS. However, relating explicitly the

damping to PS is highly nontrivial, because of difficulty in
analyzing PS under a nonuniform trap. Indeed, despite a
number of previous numerical works on damped DO of 1D
gases [25–34], the interpretation in terms of PS has never
been corroborated.
In this Letter, we study the DO dynamics of trapped 1D

superfluids in connection with PS. Through qualitative
consideration on energy loss during the damping and exact
numerical simulations with time-evolving block decima-
tion (TEBD) method [35] at zero temperature, we find a
parameter region where the damping rate G of DO and the
nucleation rate � of a PS satisfy

GðvÞ / �ðvÞ=v (1)

as a function of the flow velocity v. We emphasize that
since the damping rate is a major experimental observable
[7,9,11], the relation (1) allows for analyzing the PS nu-
cleation rate in experiment. Using this relation and TEBD,
we show that the damping rate in 1D Bose gases in an
optical lattice obeys the power-law formula derived from
the nucleation rate of a quantum PS (QPS), thus numeri-
cally confirming the PS scenario. The exponent of the
power-law is found to coincide with that for an impurity
potential [36–38] rather than for a periodic potential [17],
although there is no explicit impurity. We also discuss the
effects of finite temperatures to suggest a universal behavior
of the damping rate in 1D superfluids that can be considered
as a single-component Tomonaga-Luttinger (TL) liquid.
We describe 1D Bose gases of the total particle number

N by means of the following 1D Bose-Hubbard model,

Ĥ ¼ �J
X

j

ðb̂yj b̂jþ1 þ H:c:Þ þU
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X
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where b̂j denotes the annihilation operator on the jth site

and n̂j ¼ b̂yj b̂j. J, U, and V are the hopping energy, the

onsite interaction, and the nearest-neighbor interaction,
respectively. The last term in Eq. (2) means the external
potential that consists of a parabolic trap and an impurity,
where � is the trap curvature, Xc the position of the trap
center, d the lattice spacing, and � the impurity strength.
While the system can be in an insulating state for certain
values of the parameters, we hereafter consider a parameter
region in which the system is in the superfluid phase
because our main interest is in superflow decay via PS.

We use the TEBD method [35] to calculate the ground
state and the exact quantum dynamics of DO of Eq. (2).
TEBD allows for computing accurate time evolution of 1D
quantum lattice systems, and correctly describes quantum
fluctuations causing QPS [17,39,40]. To prepare an initial
state, we compute the ground state with Xc ¼ x0 (>0) via
imaginary time evolution. In Fig. 1(a), we show a typical
external potential (dashed line) and density profile (solid
line) of the initial state. With this initial state, we set
Xc ¼ 0 at t ¼ 0 as shown by the dashed-dotted line in
Fig. 1(a) and compute real-time evolution. In Figs. 1(b)
and 1(c), we show an example of the time evolution of the
center of mass (c.m.) position xc:m: ¼ N�1d

P
jjhn̂ji and

velocity vc:m: ¼ _xc:m:, which exhibit a damped DO. We
extract the damping rate using the formula, G ¼
lnðA0=A1Þ=t1. As indicated in Fig. 1(b), A0 and A1 are the
initial amplitude of xc:m:=d and the amplitude after the half
period t1. We also analyze the damping rate extracted from
the second half period in the Supplemental Material [41].

Before numerically verifying the relation (1) between G
and �, let us present a qualitative explanation that provides
intuitive understanding. For this purpose, we express the
oscillation-energy loss through the damping of the first half

period in the following two ways. The first one is in terms
of the lost potential energy, Eloss ¼ ð1=2ÞM!2ðA2

0 � A2
1Þ,

where ! is the oscillation frequency andM the total mass.
Assuming that the damping is so weak that � �
1� A1=A0 � 1, or equivalently Gt1 � 1, the energy
loss can be rewritten as

Eloss ’ Mð!A0Þ2� ’ Mv2
maxGt1: (3)

We used � ’ Gt1 and vmax ’ !A0 to derive Eq. (3),
where vmax is the maximum c.m. velocity as indicated in
Fig. 1(c). Thus, Eloss is expressed with G. The other way is
to use the Joule heat, Eloss ¼ P� t1, where P ¼ RI2 is the
power, R the resistance, I � navevmax the particle current,
and nave the average density. Assuming that the main
source of the resistance is due to PS, the resistance can
be related to the nucleation rate as R ¼ 2�@�=I [42] and
one obtains

Eloss � 2�@navevmax�t1; (4)

which connects the energy loss and the nucleation
rate. Equating the right-hand side of Eq. (3) with that of
Eq. (4) leads to G� 2�@nave=M� �=vmax, which agrees
with the relation (1).
Since the above explanation of the relation (1) is only

qualitative, we analyze the DO in the hard core boson limit
(U ! 1) using TEBD, in order to provide accurate numeri-
cal verification of the relation (1). In this limit, as long as
�2< V=J < 0, low energy physics of the system is well
described by the TL liquid model [43]. An impurity poten-
tial can cause QPS in the TL liquid, and its nucleation
rate exhibits the following power-law behavior with respect
to v as �imp / v2K�1 for any � when v � vc [36,37]. Here

vc is the mean-field critical velocity and K is the TL
parameter [2]. 1=K quantifies the strength of quantum
fluctuations. To hold K under control, we fix N ¼ 31, and
adjust�=J depending on V=J such that nmax ’ 0:5, where
nmax is the maximum density [see Fig. 1(a)]. In such a
situation, the analytical expression at half filling [2],
K ¼ �=½2�� 2 arccosðV=2JÞ�, is approximately valid.
If the relation (1) is correct, the damping rate should

obey G / v2K�2. To corroborate this, we plot in Figs. 2(a)
and 2(b) G versus vmax for V=J ¼ 0 and�1, taking differ-
ent values of �. We vary x0 to control vmax. As indicated by
the shaded area in Fig. 2, we find the parameter region in
which the damping rate safely obeys the power-law for-
mula. This region is determined by the following four
conditions: (i) Gt1 < 1=4, (ii) G> 10G0, where G0 is the
damping rate at � ¼ 0, (iii) x0 � d, and (iv) vmax < vc=5
[44]. We recall that the relation (1) is supposed to be valid
when Gt1 � 1 and the source of the damping is mainly
due to PS. While the first condition obviously corresponds
to the former requirement, (ii) and (iii) stem from the latter.
As for (ii), the black circles in Fig. 2 show that there is
small but finite damping because of dephasing effects even
without an impurity inducing QPS [27]. To distinguish the
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FIG. 1 (color online). Numerical data for Eq. (2) in the hard
core limit (U ! 1). We set N ¼ 31, V=J ¼ �1:4, �=J ¼
0:00032, �=J ¼ 1, and x0=d ¼ 8. (a) The solid, dashed, and
dashed-dotted lines represent the density distribution nj � hn̂ji,
the external potential at t < 0, and that at t > 0. (b) and (c) The
time evolution of the center of mass position xc:m:ðtÞ and velocity
vc:m:ðtÞ.
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QPS caused by an impurity from the dephasing, the damp-
ing at � > 0 has to be much larger than that at � ¼ 0, thus
requiring (ii). The condition (iii) is necessary because
otherwise a mismatch of the initial density and the dis-
placed trap causes additional damping or revival that blurs
the QPS effects. The last condition has to be satisfied to
validate � / v2K�1, as mentioned above. These four con-
ditions are indicated by the thin-solid, thick-solid, dashed,
and dotted lines in Fig. 2.

By fitting a function �Gð �vÞ ¼ C �v� to the data in the
shaded area, we extract the exponent � and the prefactor
C, where �G � @G=J and �v � @vmax=ðJdÞ. In Figs. 3(a)
and 3(b), we see that when �=J increases, � is almost
constant and nearly equal to 2K � 2, and C quadratically
increases for � < J. This is consistent with the previous
results that �imp / v2K�1 holds for any � [36,37] and that

�imp / �2 for small � [36]. In Figs. 3(c), we plot � versus

V=J for different values of �=J, and see that the exponents
agree very well with the expected value, i.e., 2K � 2
(solid line).

Having corroborated the relation (1) in both qualitative
and quantitative manners, we now consider the case of soft
core bosons (U <1) without the nearest neighbor inter-
action and the impurity. This case is of direct relevance to
the experiments [7–9,11], where the damped DO of 1D
Bose gases in optical lattices has been studied. To address
QPS effects, we choose N and � such that 1< nmax <2.
In this situation, there exist the regions of nj ’ 1, where the

underlying lattice structure induces strong umklapp scat-
tering leading to QPS. Since the nucleation rate of such a
QPS obeys �prd / v2K�2 when v < vc [17], we naively

speculateG / v2K�3. We takeU <Uc for the system to be
in the superfluid state, where Uc ’ 3:3J [45] is the Mott
transition point.
In Fig. 4(a), we again find the parameter region in which

G versus vmax exhibits a power-law behavior. While the
conditions (i) and (iii) remain the same as the hard core
boson case, (ii) and (iv) are modified as (ii0) G> 10Glow

and (iv0) vmax < vc=8, where Glow is the damping rate
for nmax < 1; e.g., N ¼ 37 is taken for the case shown in
Fig. 4(a). The fact that (ii0) is satisfied indicates that dis-
sipation of the transport occurs mainly due to QPS in the
regions of nj ’ 1. By fitting a function �Gð �vÞ ¼ C �v� to the

data in the shaded area, we extract � and plot it as a

(b)
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FIG. 2 (color online). Damping rates G versus the maximum
flow velocity vmax for the hard core limit with N ¼ 31 and
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10G0. The dashed lines represent vmax at x0 ¼ d. The dotted
lines represent vc=5. Each dashed-dotted line is the best fit to
data inside the shaded regions for each �=J.
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and � ¼ 0. (a) G versus vmax for U=J ¼ 3:2 and �=J ¼ 1=900.
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error bars of these lines originating from the errors in numeri-
cally evaluating K.
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function of U=J in Fig. 4(b). � agrees with the value
expected for an impurity potential, 2K � 2 (solid line),
rather than that for a periodic potential, 2K � 3 (dashed
line) [46]. This disagrees with the naive speculation men-
tioned above and is counter-intuitive in the sense that there
is no explicit impurity. However, it can be interpreted as
follows. In the narrow regions of nj ’ 1, the umklapp

process is the most relevant so that the transport is sup-
pressed strongly and locally. Hence, the unit-filling regions
move slower than the other parts of the gas, and act as
impurities for the other parts.

On the basis of the finding that G is related to �imp both

in the presence and the absence of an explicit impurity, we
suggest that there are the following three distinct regimes
regarding the damping due to PS at finite temperatures,
which are illustrated in Fig. 5(a): (A) When kBT �
EJv=vc, the PS is caused by pure quantum tunneling and

G / v2K�2, as discussed above. Here EJ ¼ @u=ð ffiffiffi
2

p
dÞ is

the Josephson plasma energy and u is the sound velocity.
(B) When EJv=vc � kBT � �F, the PS occurs due to
the thermally assisted quantum tunneling [48] and
� / vT2K�2 [36,37], corresponding to G / T2K�2,
where �F is the free energy barrier separating two neigh-
boring winding-number states. (C) When kBT � �F, the
thermal activation process becomes dominant [42] and

G / e��F=ðkBTÞ.
As sketched in Fig. 5(b), when kBT � �F� EJ, the

crossover between the regimes (A) and (B) can be induced
by changing the flow velocity with a fixed temperature.
The two regimes are separated by the crossover velocity
that is �vc � kBT=EJ. Given that one can achieve
EJ=kB � 30 nK [9] and T � 4 nK [49,50] in current
experiments, it is likely that the crossover can be observed.
Since the main feature of this crossover is determined only
by the TL parameter K and the sound velocity u, we
conjecture that it can be applied universally to 1D quantum
gases that can be effectively described as a single-
component TL liquid, regardless of microscopic details
of the system. Examples include not only the two cases

addressed above, but also paired or counterflow superfluid
states of two-component Bose [33] or Fermi [32,34] gases.
In conclusion, we have connected the PS nucleation to

the damping of DO of trapped 1D quantum gases through
the relation (1). Combining this relation with the TEBD
simulations of the 1D soft core Bose-Hubbard model, we
found that in certain parameter regions the damping rate
algebraically grows with increasing the flow velocity as
expected from the QPS nucleation rate. This result strongly
supports the interpretation that the strong suppression of
superfluid transport observed in the experiments [7–9,11]
is due to QPS. We also suggested a universal damping
behavior at finite temperatures, which can be tested in
future experiments.
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