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Magnetic reconnection in strongly magnetized (low-beta), weakly collisional plasmas is investigated by

using a novel fluid-kinetic model [Zocco and Schekochihin, Phys. Plasmas 18, 102309 (2011)] which

retains nonisothermal electron kinetics. It is shown that electron heating via Landau damping (linear phase

mixing) is the dominant dissipation mechanism. In time, electron heating occurs after the peak of the

reconnection rate; in space, it is concentrated along the separatrices of the magnetic island. For sufficiently

large systems, the peak reconnection rate is cEmax
k � 0:2vABy;0, where vA is the Alfvén speed based on the

reconnecting field By;0. The island saturation width is the same as in magnetohydrodynamics models

except for small systems, when it becomes comparable to the kinetic scales.
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Introduction.—Magnetic reconnection is a reconfigura-
tion of the magnetic field in a plasma via localized unfreez-
ing of the magnetic flux [1]. It is commonly associated with
energy release in astrophysical and laboratory plasmas, but
the details of the energy conversion mechanisms and par-
tition between particle species and fields are poorly under-
stood. This Letter focuses on a key aspect of this issue: the
conversion of the magnetic energy into electron internal
energy, i.e., electron heating.

We consider a fundamental reconnection paradigm: the
tearing mode in a periodic box [2]. The tearing instability
leads to the opening, growth, and saturation of a magnetic
island [2–6]. If the saturated island is macroscopic, it must
be a magnetohydrodynamics (MHD) solution; i.e., it cannot
depend on the microphysics of the plasma (e.g., on colli-
sionality). We will confirm this and show that the final state
is unique. This implies that the total fraction of the initial
magnetic energy converted to other forms of energy from
the beginning to the end of the evolution of the tearing mode
must be independent of collisionality. In a periodic (closed)
system, energy cannot be lost via bulk plasma outflows.
Therefore, the magnetic energy difference between the
initial and final states must be accounted for by conversion
into the thermal energy of the particles. In collisional
plasmas, this is achieved by Ohmic and viscous heating
[7]. However, many natural systems where reconnection
occurs are only weakly collisional; the only available
heating channels then are Landau damping and electron
viscosity, both of which ultimately rely on the electron
collision frequency being finite, though possibly arbitrarily
small. In this Letter, we show that electron heating via
linear phase mixing associated with Landau damping is
the main energy conversion channel in weakly collisional
reconnection in strongly magnetized (low-beta) plasmas.

Equations.—We use a fluid-kinetic model applicable to
low-beta plasmas (‘‘KREHM’’ [8]). One of its features is

the coupling of Ohm’s law to the electron (drift) kinetic
equation via the electron temperature fluctuations �Tke.
The kinetic equation supports collisions, Landau reso-
nance, and phase mixing, thus enabling kinetic electron
heating mechanisms accompanied by entropy production.
We work in the low-� regime, where �, the ratio of the

plasma to the magnetic pressure, is ordered similar to the
electron-ion mass ratio me=mi. The perturbed electron

distribution function, to lowest order in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p � ffiffiffiffi
�

p
,

and in the gyrokinetic expansion [9–12], is defined as
�fe ¼ ge þ ð�ne=n0e þ 2vkuke=v2

theÞF0e, where F0e is

the equilibrium Maxwellian, vthe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0e=me

p
is the elec-

tron thermal speed (with T0e the mean electron tempera-
ture), vk is the parallel velocity coordinate, �ne=n0e is the
electron density perturbation (the zeroth moment of �fe)
normalized to its background value n0e, and uke ¼
ðe=cmeÞd2er2

?Ak is the parallel electron flow (the first

moment of �fe; Ak is the parallel component of the vector

potential, and de ¼ c=!pe is the electron skin depth). All

moments of �fe higher than �ne and uke are contained in

ge, e.g., �Tke=T0e ¼ ð1=n0eÞ
R
d3vð2v2

k=v
2
theÞge. In the 2D

case considered here, the dynamics of the plasma is
described by the following equations [8]:

1
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d�ne
dt
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Bz

�
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e

cme
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�
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eBz

�
Ak;

�ne
n0e

þ �Tke
T0e

�
; (2)

dge
dt

� vk
Bz

�
Ak; ge � �Tke

T0e

F0e

�
¼ C½ge�

�
�
1� 2v2

k
v2
the

�
F0e

Bz

�
Ak;

e

cme

d2er2
?Ak

�
; (3)

PRL 111, 025002 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JULY 2013

0031-9007=13=111(2)=025002(5) 025002-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.025002


where C½ge� is the collision operator, f. . . ; . . .g is the
Poisson bracket, and d=dt ¼ @=@tþ c=Bzf’; . . .g, with
Bz the out-of-plane magnetic guide field and ’ the electro-

static potential. The latter is obtained via �ne=n0e ¼
1=�ð�̂0 � 1Þe’=T0e [10], where � ¼ T0i=T0e and �̂0

denotes the inverse Fourier transform of �0ð�Þ ¼
I0ð�Þe��, with I0 the modified Bessel function and � ¼
k2?�

2
i =2 (�i ¼ vthi=�i is the ion Larmor radius).

Equation (3) shows that the isothermal closure [13] ge ¼
0 is not a solution of that equation unless fAk;r2

?Akg ¼ 0,
a condition that cannot describe a reconnecting system
[though it does describe the (macroscopic) island satura-
tion [4,5], as we will find]. Therefore, the possibility of
electron heating in our system cannot be ignored.

Numerical details.—Equation (3) does not contain
an explicit dependence on the perpendicular velocity coor-
dinate v?. If we ignore any such dependence that is intro-
duced by the collision operator, v? can be integrated out, so
ge ¼ geðx; y; vk; tÞ. Next, we introduce the Hermite expan-

sion geðx; y; vk; tÞ ¼
P1

m¼2 Hmðvk=vtheÞgmðx; y; tÞF0eðvkÞ=ffiffiffiffiffiffiffiffiffiffiffiffi
2mm!

p
(g0 ¼ g1 ¼ 0, because �ne and uke have been

explicitly separated in the decomposition of �fe adopted
above). Equation (3) then unfolds into a series of coupled,
fluidlike equations for each of the coefficients gm:

dgm
dt

¼ vthe

Bz

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

s
fAk; gmþ1g þ

ffiffiffiffi
m

2

r
fAk; gm�1g

1
A

þ
ffiffiffi
2

p
Bz

�m;2

�
Ak;

e

cme

d2er2
?Ak

�

� �collðm4gm � 16�m;2g2Þ; (4)

where we have adopted a model (hyper)collision operator
with �coll ¼ 1=ð�tM4Þ, whereM is the index of the highest
Hermite polynomial kept in a simulation and �t the time
step. Thus, in our simulations, M is a proxy for the colli-
sion frequency, with higher values of M corresponding to
less collisional systems (at the large values of M reported

here, �t / M�1=2, so �coll / M�7=2).
Equations (1), (2), and (4) are solved numerically by

using a pseudospectral code [14]. The spatial grid size is
3842. The resolution in velocity space is set by M and
ranges from 30 to 500. Hyperdiffusive terms of the form
�Hr6

?, where �H ¼ 0:25=�tð�x=�Þ6, with �x the grid

spacing, are added to the right-hand side of Eq. (1)
(electron hyperviscosity), Eq. (2) (hyper-resistivity), and
Eq. (4). These are required to prevent the nonlinear
unbounded thinning of the current layer [15–17] but will
not, as we will discover, dissipate much energy [18]. In the
following, ‘‘hyperdissipation’’ refers to the hyperdiffusive
terms in all equations; ‘‘Landau’’ is the dissipation due to
hypercollisions in Eq. (4), accessed via phase mixing
(which moves energy to higher m). These are the only
two dissipation mechanisms present in our simulations.

The equilibrium in-plane magnetic field (asymptotically
smaller than the guide field Bz) is By;eq ¼ �dAkeq=dx, with
Akeq ¼ Ak0=cosh2ðx=aÞ, where a is the (normalizing)

equilibrium scale length. The (normalizing) Alfvén time
is defined as �A ¼ a=vA with vA the Alfvén speed based on
By;0 ¼ maxjBy;eqj ¼ 1. The simulations are performed in a

doubly periodic box of dimensions Lx � Ly, with Lx=a ¼
2� and Ly such that k̂y ¼ 2�a=Ly yields the desired value

of the tearing instability parameter �0a¼2ð5� k̂2yÞ�
ð3þ k̂2yÞ=ðk̂2y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ k̂2y

q
Þ [6]. For simplicity and numerical

convenience, we set �i ¼ �s ¼ de ¼ 0:25a, where

�s ¼ �i=
ffiffiffiffiffiffi
2�

p
.

Reconnection rate.—The time traces of the reconnection
rate, defined as the value of the parallel electric field at
ðx; yÞ ¼ ð0; 0Þ (the X point), Ek, are plotted in Fig. 1(a). As
shown, the reconnection rate is entirely independent of
collisionality (parameterized by M), consistent with the
fact that our simulations are in the weakly collisional
regime, where the frozen-flux constraint is broken by
electron inertia, not the collisions. The maximum value is
cEmax

k � 0:22vABy;0, similar to the fast reconnection rates

obtained in the opposite limit of weak guide field [19] and
in qualitative agreement with Refs. [20,21]. Regarding the
dependence of Emax

k with system size (not shown), we

found that Emax
k increases with �0, asymptoting to cEmax

k �
0:2vABy;0 for �

0a * 10.

Figure 2 depicts the system configuration for our least
collisional simulation (M ¼ 500, i.e., �coll�A � 2� 10�7)
at the time of maximum reconnection rate [t=�A ¼ 22:7;
see Fig. 1(a)] (top row) and at the time of maximum
dissipation rate [t=�A ¼ 29:4; see Fig. 1(b)] (bottom row).

FIG. 1 (color online). Time traces of (a) the reconnection rate
for different values of collisionality (represented by M; larger M
means less collisions); (b) the rates of dissipation via Landau
damping and hyperdissipation, for the least collisional case
(M ¼ 500); (c) the rate of dissipation via Landau damping for
different values of M. All runs had �0a ¼ 20.
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A typical X-point geometry is seen, accompanied by a
quadrupole structure in �Tke (and in �ne, not shown) [22].

Saturation.—Figure 3 shows the saturation amplitudes
obtained in our simulations (‘‘KREHM’’); overplotted
are the MHD (�s;i ¼ de ¼ 0) results from Ref. [6]

(‘‘RMHD’’). ‘‘POEM’’ is the prediction from MHD theory
[4,5], valid in the small-�0a regime. As anticipated, we
find that saturation in our weakly collisional, kinetic simu-
lations is well described by the (isothermal) MHD model.
At small �0a, this agreement breaks down, because the
island saturation amplitude becomes comparable to the
kinetic scales (de, �s;i). Saturation then becomes a slow,

diffusive process (see Fig. 3, inset): The islands slowly
expand until their width becomes �de. This is the lower
limit to the saturation amplitude (cf. [23]); indeed, the
frozen-flux condition precludes the definition of magnetic
field lines at sub-de scales.

Electron heating.—We have established that the amount
of energy converted during the evolution of the system is
independent of the collisionality; we have also checked
(not shown) that, for all but the smallest systems, the
energy converted into electron heating is a significant
fraction of the initial (magnetic) energy, reaching �60%
for the largest systems. We now investigate how the energy
is converted. Figure 1(b) shows the time traces of the
dissipation rates for �0a ¼ 20 and M ¼ 500. We see that
dissipation is almost exclusively due to phase mixing
(Landau damping), even though, a priori, the system was
free to choose to dissipate energy via electron

hyperviscosity or hyper-resistivity instead, as would per
force be the case in any model which ignores electron
kinetics [24–28]. This is a remarkable demonstration of
the dominance of Landau damping over other dissipation
mechanisms in weakly collisional reconnection.
The rightmost panels of Fig. 2 show that heating takes

place along the separatrices of the island, not around the X
point, where reconnection occurs. Inspecting Fig. 1, we
also see that there is a time lag between the peaks of the
reconnection and dissipation rates and that this time lag
increases weakly with decreasing collisionality [Fig. 1(c)].
This is consistent with the idea that magnetic energy is not
directly dissipated by the reconnection process itself [29].
Instead, the magnetic energy lost in the reconnection
process is converted into ion and electron kinetic energy.
Both species flow downstream predominantly along the
separatrices (see streamlines of ’ in the middle panels
of Fig. 2). Deceleration of these flows converts kinetic
energy into the free energy (or entropy) of the electrons,R
dxdy=V

R
dvkT0eg

2
e=ð2F0eÞ [8] (plotted in the top row of

Fig. 4). This free energy is then transferred to higher m’s
via phase mixing and finally dissipated by collisions—this
is the process that constitutes the energetics of Landau
damping and results eventually in electron heating.
The occurrence of phase mixing is evidenced by exam-

ining the spectral maps [in the two-dimensional Fourier-
Hermite (k?, m) space] of the electron free energy and its
dissipation, shown in the two top panels of Fig. 4 for M ¼
500. As time advances, indeed we see the electron free
energy moving to higher values of m, corresponding to the
formation of small scales in velocity space. During this
process, energy dissipation occurs via the hyperdiffusive
terms, acting at large values of k? (see the middle panel,
second row of Fig. 4). At later times, large enough values
of m are reached so the collisional dissipation becomes

FIG. 2 (color online). System configuration for our least colli-
sional simulation (M ¼ 500) at the time of maximum reconnec-
tion rate (top row) and of maximum dissipation rate (bottom
row). Shown are Ak [lines: full (dashed) are positive (negative)

contours] and jk ¼ �c=4�r2
?Ak [colors: the color scale is

linear, ranging from blue to red; units are arbitrary]; ’ (lines)
and �Tke (colors); the collisional dissipation via gm’s (i.e., via

Landau damping). The horizontal dashed line marks the location
of the domain cut where the distribution function of Fig. 4
(bottom row) is plotted.

FIG. 3 (color online). Saturated flux �sat vs �
0. KREHM are

the data from the kinetic simulations; RMHD are MHD results
from Ref. [6]. The dotted line (POEM) is the prediction from
MHD theory [4,5]. Inset: Time traces of flux for �0a ¼ ð1; 2Þ. In
both plots, the horizontal line is the saturated flux corresponding
to a full island width of 2de=a.
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dominant over the hyperdiffusive terms (rightmost panel,
second row of Fig. 4).

To estimate the velocity-space dissipation scale, we
linearize Eq. (4) for a given ky and find that the electron

free energy spectrum Em ¼ jgmj2=2 satisfies [8]

@Em

@t
¼ �jkyj

By

Bz

vthe

@

@m

ffiffiffiffiffiffiffi
2m

p
Em � 2�collm

4Em: (5)

Setting @Em=@t ¼ 2�Em, we obtain

Em ¼ CðkyÞffiffiffiffi
m

p exp

�
�
�
m

m�

�
1=2 �

�
m

mc

�
9=2

�
; (6)

where CðkyÞ is some ky-dependent constant, m�¼
½kyBy=Bzvthe=ð2

ffiffiffi
2

p
�Þ�2, and mc¼½9=ð2 ffiffiffi

2
p ÞkyBy=Bzvthe=

�coll�2=9. As is evidenced by Fig. 1(a), � is independent of
collisions, and thus so is m�. Therefore, while the mode is

strongly growing, m� < mc, and so the collisional cutoff

cannot be reached. This explains why the peak of the
dissipation rate must occur later than that of the reconnec-
tion rate. As reconnection proceeds into the saturation
regime, � ! 0, so, regardless of how small �coll is, even-
tually m� >mc, and, from then onwards, the Hermite

spectrum cutoff is determined by mc. In our simulations,
this happens at t � 26�A, roughly independent of M,
because the decrease of � is fast [see Fig. 1(a)]. The inset
in Fig. 5 shows the time lag between the peaks of the
reconnection and dissipation rates vs M. The logarithmic
dependence is due to the fast decay of �, and the conse-
quent rapid increase of m� � ��2 to overtake mc, thus

enabling dissipation. The weak dependence of the lag on
collisions implies that dissipation occurs in a finite time
even for weak collisionality.

The value of m ¼ mpeak at which most energy is

dissipated is the solution of dð�collm
4EmÞ=dm ¼ 0, with

Em given by Eq. (6) in the regime m� � mc. This yields

mpeak ¼ ð9=7Þ2=9mc. This expression, evaluated for ky ¼ 1

[30], is compared in Fig. 5 with the numerical data. The
remarkable agreement that is obtained shows that the
electron heating we observe is the result of linear phase
mixing due to electrons streaming along the field lines, not
to the excitation of any particular wave.
The phase mixing process is illustrated by the plots of ge

in the bottom row of Fig. 4. The progressive creation of
finer scales in velocity space is manifest (cf. [25,31]).
Conclusions.—This Letter presents the first investiga-

tions of electron heating caused by reconnection in
strongly magnetized, weakly collisional plasmas. It is
shown that electron heating is mainly due to linear phase
mixing (Landau damping). We have not explored the de-
pendence of this result on the parameters �i, �s, and de, but
preliminary investigations suggest that this might be a
generic feature of reconnection in such plasmas.
Reconnection and electron heating are causally related
but temporally and spatially disconnected: Heating hap-
pens after most flux has reconnected and along the island
separatrices, not in the current sheet. Other key conclusions
are (i) the maximum reconnection rate is cEmax

k �
0:2vABy;0, similar to the weak guide field limit, provided

that the system is large enough, and (ii) the saturation
amplitude in the kinetic (weakly collisional) regime is
identical to that in MHD (collisional) systems [6], as
long as the island is large compared to the kinetic scales.
The electron inertia scale appears to provide the lower
boundary on the saturation amplitude—this may be impor-
tant to the understanding of electromagnetic turbulence
(e.g., [32–35]), as it effectively sets the minimum fluctua-
tion amplitude.

FIG. 4 (color online). Electron free energy spectrum (top row),
dissipation spectrum (middle row), and a cut at y=a ¼ 2:3
(see Fig. 2) of ge (bottom row) at the early nonlinear stage
(left) and at the peaks of the reconnection rate (center) and
dissipation rate (right) for a run with �0a ¼ 20 and M ¼ 500.
The color scale is linear, and units are arbitrary.

FIG. 5 (color online). Value of m at which the most energy is
dissipated,mpeak, as a function of collisionality, �coll. Inset: Time

lag between the peak of the reconnection rate (�max
R ) and the peak

of the dissipation rate (�max
D ) as a function of �coll.
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