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Pentamode metamaterials are a class of acoustic metafluids that are characterized by a divergence free

modified stress tensor. Such materials have an unconventional anisotropic stiffness and isotropic mass

density, which allow themselves to mimic other fluid domains. Here we present a pentamode design

formed by an oblique honeycomb lattice and producing customizable anisotropic properties. It is shown

that anisotropy in the stiffness can exceed 3 orders of magnitude, and that it can be realistically tailored for

transformation acoustic applications.
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Introduction.—Metamaterials comprise a relatively new
area of research, which utilizes a wave-functionalized
microstructure to yield unconventional effective material
properties. With its origin in microwave optics [1],
domains of study have since expanded to include near-
infrared and visible optics [2,3], radio-frequency elec-
tronics [4], and magnetics [5].

Many of the exotic phenomena observed in optical
metamaterials, such as negative refraction and near-zero
permittivity, have inspired analogous studies in acoustics
[6–9] and elastodynamics [10,11]. Additionally, coordinate
transformation methods [12] have generated new acoustic
device concepts that do not require material negativity,
such as lenses [13], beam splitters [14], black holes [15],
and scattering reducing cloaks [16–19]. Such devices are
defined as metafluids, which are effective materials with
unconventional fluid-like properties whose particular bulk
realization typically requires an anisotropic mass density.
Experimental demonstration has been sparse, with most
studies relying on a superlattice approach of alternating
isotropic layers [20]. However, such an approach is diffi-
cult to realize and limited by the so-called mass catastro-
phe, which requires infinite mass density in the effective
material profile.

An alternative approach is to generalize the conventional
stress strain relationship to include pentamode metamate-
rials. Pentamode materials [21–23] are metafluids that
support five easy infinitesimal strains (i.e., there is only
one nonzero eigenvalue of the elasticity tensor which is of
a pure pressure type), and satisfies the invariance of the
governing equations by virtue of maintaining a harmonic
transformation. Pure pentamodes, in general, have an iso-
tropic density and anisotropic stiffness with a negligible
shear modulus. Recently, a fabricated isotropic pentamode
material was shown to have an effective bulk modulus to
shear modulus ratio that potentially exceeds 3 orders of
magnitude [24]. However, it has yet to be reported that

anisotropic pentamode metamaterials can be realistically
implemented for specific applications, since an elastic
solid with a zero shear modulus would have no stability
and immediately flow away.
In this Letter, we show that an oblique honeycomb

lattice can be utilized as a simple yet versatile building
block for pentamode device construction, which exerts
highly anisotropic control over sound waves. The method
presents a distinctly different approach to acoustic meta-
materials, in that it does not require the difficult to achieve
high value anisotropy in the effective mass density in
addition to removing frequency bandwidth problems
associated with inertial metafluids. Potential applications
include extraordinary scattering reduction and arbitrary
wave manipulation, low loss acoustic delay lines [25],
and phase controlled logic gates [26].
Anisotropy in pentamode metafluids.—We consider elas-

tic wave propagation in a microstructure having the general
characteristics presented in Fig. 1. For simplicity we
present our results in a two-dimensional (2D) plain strain
space; however, the analysis can straightforwardly be
extended to three dimensions. Only wavelengths much
larger than the lattice constants a1 and a2 are considered
to achieve a homogeneous approximation. As shown in
Fig. 1 the strut angle � can be tuned to create isotropic
(�� 30�), highly anisotropic (�� 0�), and reentrant
(�< 0�) materials. Hence, based upon a targeted property
profile, a gradient structure can be designed having
smoothly varying properties related to the local changing
microstructure. The condition that a1 remain constant
throughout does not effect the generality of the results
presented.
To demonstrate the properties of the structure, finite

element analysis (COMSOL MULTIPHYSICS) was used to
determine the structural eigenfrequenies of each geometric
permutation, which has Bloch-Floquet periodic conditions
prescribed on the unit cell boundaries. This is analogous to
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computing the elastic wave band structure where the first
two eigenfrequencies correspond to quasishear (qS) and
quasilongitudinal (qL) modes, respectively (see below for
discussion on quasimodes). These two eigenfrequencies
were selected at small values of the wave number, near
the origin where the dispersion curves are linear, to obtain
long wavelength quasishear vqS and quasilongitudinal vqL

phase speeds. An anisotropy factor � is then defined as the
ratio of effective bulk modulus in the principle directions,

� ¼ Kx

Ky

¼ ½v2
qL � v2

qS�x
½v2

qL � v2
qS�y

: (1)

Similarly, a pentamode factor �, which assesses the con-
tribution of the shear, is defined as

�x;y ¼
�v2

qL � v2
qS

v2
qL

�
x;y
; (2)

where the subscript represents the propagation direction.
In the above equations it is assumed that the effective
dynamic mass density ~� is isotropic and equal to the
volume averaged mass density [and hence is removed
from Eqs. (1) and (2)]. Justification for this is shown in
the Supplemental Material [27].

Figure 2(a) displays the calculated anisotropy factor,
using the material properties of steel for the lattice and
void for the interstitials, as a function of the geometric
parameters�, �, and �D, where �D ¼ D=ja1j. Exponentially
increasing anisotropy is seen as � approaches 0�, with �
exceeding 103 for small � and �D. Figures 2(b) and 2(c)
display the calculated pentamode factor, for the same
geometric conditions as in Fig. 2(a). When � is small, �
itself can be anisotropic; the contribution to shear modes is
negligible in the x direction [Fig. 2(b)] and substantial
in the y direction [Fig. 2(c)]. This occurs because, in the
weak direction, as � decreases towards 0 the compression
modulus (�v2

qL) decreases faster than the shear modulus

(�v2
qS).

In isotropic media, the displacement polarization of the
propagating wave is either parallel or normal to the wave

vector direction. In anisotropic media, however, this is in
general not the case and waves propagate as quasilongitu-
dinal (qL) and quasishear (qS) modes. The angle between
the propagation direction nk ¼ k=jkj and the qL polariza-
tion direction nqL is expressed as

�k�qL ¼ cos�1ðnk � nqLÞ: (3)

Because qL and qS modes are orthogonal �k�qS ¼
�k�qL þ �=2, and for pure modes �k�qL ¼ 0. It is seen

in Fig. 2(d) that under the current design there is a very
strong dependence of �k�qL on �, and that for small �

there exists an extreme resistance of the wave to displace
out of the stiff (x) direction. In summary, there are two
phenomena that have the potential to affect material per-
formance from the pentamode ideal, and both are born out
of the relationship between the stiff (stretch-dominated)
and weak (bending-dominated) directions of the lattice
in the extreme anisotropic cases when � is small. One
[Fig. 2(c)] involves an increasing role of the shear mode

FIG. 2 (color). Properties of an anisotropic pentamode meta-
fluid. (a) Anisotropy factor � as a function of unit cell geometric
parameters, using the constituent properties of steel and lattice
orientation as in Fig. 1. Pentamode factor �x in the stiff direction
(b) and �y weak direction (c). Note scale difference between

(b) and (c), and that the y axis in (b) and (c) is the same as in
(a). (d) Behavior of quasimodes as the design becomes more
anisotropic (small �) at high propagation angles (�, which is
measured from the horizontal axis). The volume fraction for the
range of parameters covered in (a)–(d) spans from approximately
1.5% to 64%.

FIG. 1 (color). Schematic of an anisotropic 2D pentamode
microstructure, with one unit cell highlighted. Bulk effective
properties were tuned with variation in cell geometry including
joint diameter D, strut angle �, and inner-strut angle �. The unit
cell angle � is obtained by � ¼ tan�1½1þ tanð�Þ�, with
�15� <�< 30�. a1 is held fixed throughout.
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in the weak (y) direction due to a decreasing compression
modulus, and the other [Fig. 2(d)] involves extreme devia-
tion from pure propagating modes that tend to polarize
along the stiff (x) direction for qL and weak (y) for qS.

Device applications.—To demonstrate the efficiency of
our method to devise acoustic metafluids, we employ it to
design two different transformation acoustic devices. The
first one is based on the concept of an acoustic mirage,
where an observer hears an echo from a distant wall,
whereas in reality the echo originates from a much closer
boundary. Norris [23] theoretically showed that a 2D

mirage can be implemented using a pure pentamode meta-
material having orthotropic symmetry in the stiffness ten-
sor. This metafluid, of length a, mimics a larger fluid
domain, of length aþ d, and is both impedance matched
and has equivalent acoustic travel times, such that to an
external observer the two domains are indistinguishable
(see Fig. 4). The mirage density and bulk modulus are
expressed as

~� ¼ aþ d

a
�0; K ¼ K0

a
aþd 0

0 aþd
a

" #
; (4)

where �0 and K0 are the density and bulk modulus of
the background fluid, in the present case water. Using
equation (4) the mirage device can now be designed by
choosing a constituent material and adjusting the unit cell
geometry to approximate the required properties.
Figure 3(a) shows the band structure of a unit cell [see

inset of Fig. 3(a)] which approximately satisfies Eq. (4) for
a mirage parameter of a ¼ d, as a function of the normal-
ized frequency � ¼ 2�fja1j=c0, where f is the circular
frequency and c0 is a reference sound speed (here water).
For this choice of geometric parameters, K11 ¼ 0:5052K0,
K22 ¼ 2:0K0, and ~� ¼ 2:037�0, as can be seen in the band
structure. With using silver as the base material,
� ¼ 0:24, �x ¼ 0:96, and �y ¼ 0:99 (note that this cell

is oriented differently as compared to Fig. 1). Other
choices of base materials are possible, which would then
require a new parameter search in an attempt to match
Eq. (4). The device has a sufficient amount of shear for
structural stability yet still retains pentamode character-
istics. Additionally, a wideband shear-wave directional
band gap is noticed for propagation in the weak (x) direc-
tion. Figures 3(b) and 3(c) show the equifrequency con-
tours of the qS and qL modes at selected frequencies. At
�< 0:01 the qS modes are approximately isotropic, with
deviation from circularity of less than 5%. For higher� the
qS modes have both significant increasing anisotropy and
dispersion, as indicated by the relationship between group
velocity and wave vectors inside the lattice. The equifre-
quency contours for the qL mode, conversely, maintains

= 0x a d

FIG. 4 (color). Acoustic mirage device for mirage parameter of a ¼ d, showing the real part of the scattered pressure field, using
water as the background fluid. Frequency � ¼ 0:1 and incident angle �i ¼ 43:4�; geometric parameters are those from Fig. 3.
An observer at x ¼ 0 sees the same acoustic field (amplitude and phase) with the pentamode metafluid (a) as without (c). For reference,
a domain (b) is shown with the same length as the mirage. A plane wave travels from left to right, with imposed zero-reflection
condition on left boundaries and zero normal displacement condition on right boundaries. Top and bottom boundaries have Bloch-
Floquet conditions.
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FIG. 3 (color). (a) Normalized band structure along the prin-
cipal directions for the unit cell used in the acoustic mirage. Inset
shows the unit cell and first Brillouin zone with the irreducible
part shaded in gray. (b), (c) Equifrequency contours for qS and
qL modes at selected frequencies (contours not calculated to
zone boundaries). The dotted curve depicts the wave vector k
direction, and anisotropic behavior is depicted by the difference
between k and group velocity vector vg.
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the required ellipsoidal anisotropy over a broad range of�.
For a direct comparison between the fluid model of Eq. (4)
and the unit cell properties see Supplemental Material
Fig. 2 [27].

Using a unit cell with the specific properties obtained
above, an acoustic mirage device is constructed as
depicted in Fig. 4. Figures 4(a) and 4(c), respectively,
compare the scattered acoustic fields for the mirage and
the nonmirage case (the larger domain, termed the con-
trol), and they are seen to have excellent agreement. A
reference domain is shown in Fig. 4(b). Since the pentam-
ode design is not based on narrow resonances, the mirage
will also operate over both a very wide frequency band-
width and all angles of incidence. Figures 5(a) and 5(b)
summarize the difference of the scattered pressure field
amplitude �p and phase �	 between the mirage and
control, with excellent agreement seen, though not perfect
since there is a finite shear modulus in the lattice. This is
compared to the reference, Figs. 5(c) and 5(d), which
depend strongly on the incident angle and frequency
between the two domains. See Supplemental Material
[27] for additional discussion on mirage performance
and sensitivity to design variables.

The above outlined method also has the flexibility to
realize more complicated material profiles. To demonstrate
this, we realize the material property values for a cylindri-
cal pentamode scattering reduction layer for use in an
aqueous environment. A graded anisotropic honeycomb
lattice is used to simulate the transformed space, which
reduces the actual size of the cylinder’s radius a to virtual
radius �. One possible mapping function (though not
unique) describing the transformation layer is [28]

fðrÞ ¼ ðb2 � a2Þ�1

�
ðb2 � a�Þr� ða� �Þb2 a

r

�
; (5)

where r and b are the radial coordinate and outer radius
of the transformation layer, respectively. Equation (5)
maintains both radial impedance and orthogonal wave
speed matching with the external fluid. Figure 6 compares
the ideal pentamode material properties and values
obtained from the composite metafluid for the case of
� ¼ a=3 and b ¼ 2a, using steel as the base material. In
2D, pure pentamode properties can be obtained through [22]

�KkðrÞ ¼ 1

f0ðrÞ
fðrÞ
r

; �K?ðrÞ ¼ f0ðrÞ r

fðrÞ ;

��ðrÞ ¼ f0ðrÞ fðrÞ
r

; a � r � b; (6)

where the overline represents normalization to water.
Excellent agreement is demonstrated. For all cases of the
designed properties, pentamode behavior is achieved,
�x ¼ �y � 1. At r ¼ a, in Fig. 6, �Kk ¼ 0:16, �K? ¼
6:33, and �� ¼ 0:70. An inertial metafluid version of the
transformation layer using Eq. (5) produces (at r ¼ a) �K ¼
1:42, ��? ¼ 0:157, and ��k ¼ 6:33. Using a superlattice

approach to realize these inertial values requires alternat-
ing isotropic layers with properties ��1 ¼ 12:58, �K1 ¼ 6:29
and ��2 ¼ 0:079, �K2 ¼ 0:80. Realizing such a composite
material is prohibitively difficult.
It is noted that Eq. (6) is for a cylindrical coordinate

system, whereas the unit cell analysis is rectilinear.
However, although it is the point of this work to demon-
strate the feasibility to approximate unique property values
required in pentamode applications, the design of a gra-
dient curved structure based upon an anisotropic honey-
comb lattice is beyond the scope of the current work and
will be presented elsewhere. Furthermore, since the
method is fully scalable, the local difference between the
two systems decreases with decreasing unit cell size.
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See Supplemental Material [27] for further discussion on
the scattering performance of a pentamode scattering
reduction layer, based on a system of homogenized layers
with properties obtained (including shear) from the method
described above. We lastly note a concurrent work [29],
which also explored anisotropy in pentamode systems.

Conclusions.—Aversatile method to design and charac-
terize highly anisotropic pentamode elements for trans-
formation acoustics was presented. The design method is
based upon customizing the geometric parameters of
an oblique honeycomb lattice to target particular trans-
formation acoustics applications. In the low frequency
limit, the metallic structures act as acoustic metafluids
with pentamode properties, and have negligible shear
modulus relative to its anisotropic fluidlike stiffness. The
simplicity of the design (easy to fabricate) coupled with the
effectiveness of performance shows promise to realize
concepts hitherto constrained by inertial-based metamate-
rial constructions.
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