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Coupled oscillators are shown to experience two structurally different oscillation quenching types:
amplitude death (AD) and oscillation death (OD). We demonstrate that both AD and OD can occur in one
system and find that the transition between them underlies a classical, Turing-type bifurcation, providing a

clear classification of these significantly different dynamical regimes. The implications of obtaining a

homogeneous (AD) or inhomogeneous (OD) steady state, as well as their significance for physical and
biological applications and control studies, are also pointed out.
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Since the work of Van der Pol and Van der Mark [1], the
studies of coupled nonchaotic oscillators have provided a
rich source of ideas and insights regarding the role of
different coupling types, as well as the dependence on
the oscillator structure in the generation of new dynamical
regimes [2—4]. It has been shown that even ensembles
consisting of identical oscillators may generate a variety
of rhythms that differ in their period and phase relations
based on the coupling organization [5-8]. Apart from such
rhythmogenic activity, coupling can even suppress oscil-
lations in a network by different mechanisms. Here, we
distinguish between two main manifestations of oscillation
quenching, amplitude and oscillation death phenomena,
which are structurally different.

Generally, the amplitude death (AD) refers to a situation
where oscillations are suppressed when individual oscilla-
tors are coupled and return to the steady state of the system
instead. Thus, the amplitude death results in a homoge-
neous steady state (HSS), since all of the oscillators popu-
late the same state. Three main mechanisms can lead to this
phenomenon: (a) a sufficiently large variance of the fre-
quency distribution [2,9], (b) existence of time delay in the
coupling [10-13], and (c) coupling of identical oscillators
through dissimilar (or conjugate) variables [14,15] (for a
recent review on AD, see Ref. [16]). On the other hand, the
second manifestation of oscillation quenching—the oscil-
lation death (OD) phenomenon—has a significantly differ-
ent background of occurrence compared to AD. Namely,
OD is a result of breaking the system’s symmetry through a
pitchfork bifurcation of the unstable steady state, whereby
the homogeneous steady state splits, giving rise to two
additional branches. In the limiting case of two coupled
oscillators, one follows the upper, whereas the second
oscillator follows the lower branch. Thus, OD is mani-
fested as a stabilized inhomogeneous steady state (IHSS),
displaying further the possibility for the occurrence of
additional limit cycle(s) in the same phase space area.
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The idea of the broken symmetry steady state pioneered
by Turing [17] for stationary media received its mathe-
matical formulation by Prigogine and Lefever [18] for two
identical oscillating elements—Brusselators, coupled in a
diffusionlike manner. Furthermore, it has been shown theo-
retically that OD is model independent, persisting for large
parametric regions in several models of diffusively coupled
chemical [19] or biological oscillators [7,20-24].
Experimentally, the extinction of oscillations in chemical
reactors coupled by mutual mass exchange was initially
reported by Dolnik and Marek [25]. Later on, Crowley and
Epstein demonstrated for two coupled, slightly nonident-
ical chemical oscillators that the basis for the OD is a
specific, vector-type coupling, namely, coupling via a
slow recovery variable [26]. Recently, OD has been ex-
perimentally observed in chemical nanooscillators (micro-
fluidic Belousov-Zhabotinsky-octane droplets), diffusively
coupled via signaling species (Br,, in this case) [27].
However, in certain systems, i.e., in neurobiology, a mani-
festation of both oscillation quenching types is present: OD
constitutes a well-known phenomenon in neurons, the
winner-take-all situation [28], whereas AD mainly serves
to suppress neuronal oscillations [29].

Because of their significantly different representations,
as inhomogeneous (OD) and homogeneous (AD) steady
states, both oscillation quenching types allow the genera-
tion of two structurally different dynamical regimes with
different meaning. This is important not only from a view-
point of dynamical control but also from an application
aspect: it has been shown that OD can be interpreted as a
background mechanism of cellular differentiation [30,31],
whereas AD is mainly used as a stabilization control in
physical or chemical systems [32,33]. Thus, OD is espe-
cially significant for biology, since in contrast to AD, it can
provide presence of heterogeneity in a stable homogeneous
medium. This possibility is further widened by the fact that
OD is a source of a stable inhomogeneous limit cycle
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(IHLC) in many systems [22,34], and an IHLC represents
in turn an additional mechanism for generating
heterogeneity.

Although mathematically the background mechanisms,
as well as the manifestations of OD and AD phenomena,
can be clearly distinguished, some authors consider these
different quenching types without strong discrimination
[14]. A recent burst of publications [35-37] devoted to
oscillation quenching thus requires further clarifications in
this field.

One of the most challenging open problems here is to
identify the transition scenario(s) between these two very
distinct dynamical regimes, allowing us in turn to stress the
sharp contrast between them. Thus, in this Letter, we aim
to identify the role of coupling in the evolution from AD to
OD for the first time in a single paradigmatic system,
characterizing additionally the accompanying limit cycles.
We confine ourselves primarily to the transition effect and
establish a classification of the conditions under which one
or both of the oscillation quenching manifestations can be
observed.

We analyze a model of two coupled Landau-Stuart
oscillators [38] given by the equation of motion

t=(1+iow—|zP)z ey

with @ being the frequency, and z(r) = x(r) + iy(r).
Coupling two such oscillators diffusively, the dynamical
equations expressed in Cartesian coordinates give

X;=Px; — wy; + elx; — x), Vi =Py + ox;
2

Here, P, = 1 — |z;|%,i,j = 1,2,and i # j. The parame-
ter £ governs the coupling strength. For ¢ = 0, each oscil-
lator has a stable limit cycle at |z;| = 1 on which it moves
at its natural frequency w;, rendering the equilibrium so-
lution of system (2) z; = 0 linearly unstable.

We are interested here in stabilization scenarios, i.e.,
routes that lead to one of the two oscillation quenching
types, AD or OD phenomena, as well as the possibilities
for transition between them. Previous studies have under-
lined the fact that different frequencies can stabilize
coupled oscillators even in the absence of delays, whereas
identical frequencies cannot [2,13]. Since w; = w; is a
more stringent case for stability, we consider first the
case of oscillators with identical frequencies. The analysis
is performed by tracking the detailed bifurcation structure
of the system (using the XPPAUT package [39]) as the
coupling coefficient is varied.

For identical elements (without any loss of generality,
we consider here w; = w, = 2), we find a manifestation
of a stable oscillation death regime. The route to OD in the
system of coupled identical Landau-Stuart oscillators
follows the classical bifurcation scenario as characterized
in previous studies [7,19,21]. In particular, the system (2)
has two sets of fixed points: the origin (0, 0,0, 0)

which exists for all & and is unstable, and the pair
(x5 y1v» —Xp5, —yy), where x;- = —(wy;-/(0* +2&y7.))

and y» = \/(8 — w? * &> — w?)/2e. The characteristic
eigenvalue equation at the origin determines the conditions
for which an IHSS occurs: for & = ((w? + 1)/2) = 2.5, a
pitchfork bifurcation [PB; in Fig. 1(a)] gives rise to the
two separate branches of the IHSS [time traces shown in
Fig. 3(a)], on which OD is stabilized via Hopf bifurcations
[HB,, in Fig. 1(a)].

Although the Hopf bifurcations determined with the
bifurcation analysis [HB; and HBy, in Fig. 1(a)] give rise
to unstable limit cycles, direct numerical simulations iden-
tified the existence of stable oscillatory solutions. We
detect two main oscillatory solutions: in-phase oscillations,
whose region of stability ends with the occurrence of a
stable OD regime [time traces given schematically in
Fig. 3(a)], and antiphase oscillations with a significantly
smaller stability region (results not shown).

In general, oscillation quenching in systems of nonident-
ical oscillators, i.e., oscillators with a defined frequency
[A = (w;/ ;)] or parameter mismatch, has been vaguely
characterized from the aspect of OD [23,36,40], in contrast
to its AD counterpart [2,9,19,38]. Thus, we ask here the
following question: What is the role of coupling in the
evolution from the AD to the OD phenomenon, and under
which conditions is this process determined? In order to
identify the possibility for OD manifestation if A > 1, as
well as to identify the transition scenario between both

0.4

0

-04 1
0.2

0f—-

< 0.2
; 0.8

0

-0.8
0.8

0

-0.8

FIG. 1 (color online). Role of coupling in the evolution from
AD to OD. Parameters: w, =2 and (a) A =1, (b) A =2,
(¢c) A =3.385, and (d) A = 4. Additionally, the accompanying
limit cycles are also shown. Thin solid lines denote a stable HSS,
thick solid lines a stable IHSS, dash-dotted lines an unstable
steady state; dotted lines denote unstable limit cycles, whereas
colored (online) solid lines denote stable limit cycle solutions.
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oscillation quenching types, we study next the dynamical
structure of the system for increasing frequency mismatch.

If 1.95 < A < 3.1, the oscillators no longer suffer death:
the OD regime (stable for 1 = A = 1.95) is now destabi-
lized, and additionally, no presence of stable AD has been
identified [Figs. 1(b) and 2]. Thus, for € > 0, the dynamics
is periodic [Fig. 3(b)]. However, at A = 3.1, a critical
transition occurs: for a given coupling strength (here,
e = 2.91), the stability of the origin changes, and the limit
cycles collapse into the origin via an inverse Hopf bifurca-
tion [HB, occurs for € = 2.37 in Fig. 1(c), demonstrating
this principle for A = 3.385]. This means that the oscil-
lations are quenched under the coupling, and the system
evolves toward the homogeneous equilibrium which is
stable between HB, and HBj [in Fig. 1(c), HB; occurs
for ¢ = 4.299]. This allows for a stable AD effect to be
observed (as previous classical analyses have shown
[2,38]). However, what previous studies failed to observe
is that in this case, the pitchfork bifurcation responsible for
the symmetry breaking of the HSS is also still present in a
near proximity of HB;, right after AD is destabilized [PB;
at € = 4.518 in Fig. 1(c)]. The frequency mismatch A, on
the other hand, is not sufficient to stabilize the two
branches of the IHSS. What is important to note here,
however, is the presence of an additional stable limit cycle
from the supercritical Hopf bifurcation HB5. In particular,
stable oscillations [small amplitude, phase-shifted oscilla-
tions; see the conjecture lines in Fig. 3(c)] are present in a
small parameter region between the supercritical Hopf
bifurcation HB; and the pitchfork bifurcation PB,. From
this broken symmetry bifurcation point, a secondary stable
bifurcation branch emerges, corresponding to an inhomo-
geneous limit cycle [characterized with a situation when
both oscillators perform almost in-phase oscillations—but
with shifted amplitudes; time traces are displayed in
Fig. 3(c)]. The systematic analysis of the system reveals
that the interplay between heterogeneity and coupling
strength is sufficient to introduce symmetry breaking,
here manifested via a secondary bifurcation structure.
However, this level of heterogeneity allows only for one
type of oscillation quenching to be stabilized—the AD
phenomenon.

Increasing A even further leads to a critical value for
which a qualitative transition occurs: the AD phenomenon
represented via the stable homogeneous steady state tran-
sits to a stable inhomogeneous steady state, or an OD
regime [Fig. 1(d) and conjecture lines in Fig. 3(d)]. The
evolution between these two very distinct dynamical
regimes is characterized with a classical Turing-type bifur-
cation. We demonstrate next the main structure of the
corresponding bifurcation scenario.

In particular, for increasing frequency mismatch A, the
broken symmetry bifurcation points of the HSS [PB; in
Fig. 1(c)] and the limit cycle [PB, in Fig. 1(c)] come closer
together, and at A ;a1 = 3.45 they merge. This gives birth

to a supercritical pitchfork bifurcation [PB; in Fig. 1(d)],
which allows for symmetry breaking of the stable HSS
(AD regime) and a transition to an inhomogeneous steady
state and a stable OD regime. On the other hand, the
supercritical Hopf bifurcation HB; which marked the AD
stability region [Fig. 1(c)] now moves to the right, resulting
in the birth of an unstable limit cycle solution [as shown in
the bifurcation diagram and Fig. 3(d)]. The bifurcation
scenario which we here identify as the main evolution
transition between the AD and OD regimes resembles the
key idea underlying the Turing mechanism: a homogene-
ous equilibrium is stable to homogeneous perturbations but
unstable to certain spatially varying perturbations, leading
to a spatially inhomogeneous steady state, that is, a spatial
pattern. Thus, the transition from a homogeneous to an
inhomogeneous steady state (HSS — IHSS), which we
observe here, resembles a Turing scenario, only without
the space variable. In more abstract terms, when consider-
ing a system of coupled oscillators, the oscillator number
plays the role of a space coordinate. It is also important to
stress here that in the classical Turing definition, the homo-
geneity of the medium does not arise due to the coupling
present in the system, as in the current case.

By tracing the interdependence of the frequency mis-
match A and the coupling strength &, a more systematic
characterization of the AD — OD transition can be estab-
lished, as determined by the critical parameter values
(Fig. 2). Cleatly, the parametric stability region of newly
stabilized OD regime is further increased with growing A
values, and the A is also responsible for the occurrence of
the AD phenomenon in this example. Moreover, it is
critical to note that the inhomogeneous limit cycle solution
which resulted from the broken symmetry bifurcation point
of the limit cycle in Fig. 1(c) retains its structure after
the formation of the stable inhomogeneous steady state
[Fig. 3(d)]. In particular, the stable THLC generated by
the Hopf bifurcation which marks the stability region of
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FIG. 2. Two parameter (¢ vs A) bifurcation diagram denoting
the transition between (un)stable homogeneous and inhomoge-
neous steady states for the system of two coupled Stuart-Landau
oscillators [Egs. (2)].
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FIG. 3. Conjecture lines denoting stable limit cycles. The
parameters are the same as in Fig. 1. Solid lines correspond to
time traces of the first oscillator (x;), whereas dashed lines
correspond to the second oscillator (x,).

the OD regime [HB,; in Fig. 1(d)] has the same character-
istics: both oscillators display almost in-phase oscillations,
differing from each other by an amplitude shift [Fig. 3(d)].

We have also studied the general case of N oscillators
connected with global diffusive coupling and have found
that the transition scenario between the homogeneous and
inhomogeneous steady states is preserved, since both AD
and OD manifestations persist in the same form. By defi-
nition, in the case of AD, the oscillators return to the same
steady state of the system, whereas the inhomogeneous
steady state (OD) is manifested via a two cluster decom-
position independently of N [7]. Thus, following a similar
bifurcation scenario as for N = 2, the stable OD that exists
for N coupled identical oscillators is destabilized when the
eigenfrequencies of the oscillators start to spread apart, and
the oscillators are then located on the limit cycles. Then, in
a given (A, &) interval, an inverse Hopf bifurcation gives
rise to AD, until at the critical parameter values, a tran-
sition to stable OD occurs. Again, a Turing-type bifurca-
tion is characteristic for this scenario. Local coupling, on
the other hand, has been shown to induce novel manifes-
tations of OD characterized with multiple stable clusters in
the vicinity of the two classical OD branches [41]. Because
of the complexity of the dynamical structures and the
number of stable attractors that can appear under these
conditions, the possibility for a slightly modified transition
scenario is not excluded. Thus, this problem awaits further
investigations.

Generally, the transition between AD and OD is not
restricted to the methodological example studied here but
also persists for different coupling types. We have studied

additionally the Wilson-Cowan system describing the in-
teraction between populations of inhibitory and activatory
neurons (for simplification, each population was repre-
sented with a single oscillators, as demonstrated in
Ref. [29]). Given that the system admits an orbitally stable
periodic solution under a wide range of parameters,
increasing the strength of connections between the excita-
tory neurons can cause the oscillations to disappear, and
the system transits to an AD regime [29]. The background
mechanism of AD is, however, different than the previ-
ously studied case of coupled Landau-Stuart oscillators:
the AD here appears due to lack of uniformity of the local
frequency along the limit cycle of the coupled system. A
necessary feature for this mechanism is that the coupling
does not vanish identically when the oscillators are in the
same phase. Introducing now inhibitory connections
between the neurons allows the system to break symmetry.
Thus, for a critical strength of the inhibitory coupling, a
supercritical pitchfork bifurcation determines the transi-
tion from stable HSS (AD regime) to an IHSS and a stable
OD regime, as previously characterized.

The importance of oscillation quenching, both AD and
OD, has been noted by many authors in relation to various
physical and biological phenomena [2,7,19,21,28]. A sup-
pression of oscillations is, in particular, significant in biol-
ogy, and especially in neuronal systems, where oscillation
quenching has been related to short term memory [42] and
to selection and switching in the basal ganglia, both under
normal and pathological conditions [43,44]. Our findings
suggest, however, that special attention must be paid to the
particular oscillation quenching type. In contrast to pre-
vious studies, where the existence of a frequency mismatch
has only been considered as a route to AD phenomenon,
we show here that for one-dimensional diffusive coupling,
AD evolves towards OD, manifested as an inhomogeneous
steady state with significantly different dynamical features.
Our analysis has uncovered that a classical Turing-type
bifurcation characterizes the transition from AD to OD.
This in turn implies that both quenching types represent
rather robust and common dynamical behavior for inter-
acting oscillatory processes, since many real-life networks
inevitably involve oscillatory processes with varying fre-
quencies. Moreover, considering that one-dimensional dif-
fusion is a frequent mechanism of coupling in chemical
and biological systems, we expect that the transition sce-
nario which we investigated here for the paradigmatic
model of coupled Landau-Stuart oscillators is a character-
istic feature of more realistic coupled systems.
Additionally, the observation of the same bifurcation sce-
nario under very different conditions (e.g., nondiffusive
coupling and a different generation mechanism of AD in
the Wilson-Cowan example), is in favor of the generality of
the considered principle. Thus, another possible applica-
tion of the discussed scenario could be maintaining differ-
ent stable steady states (HSS or IHSS) of a laser output.
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In this manner, it will also be interesting to investigate in
future whether the proposed transition mechanism can be
used as a stabilization control technique of coupled chaotic
systems.
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