
Optimal Waveform for Fast Entrainment of Weakly Forced Nonlinear Oscillators

Anatoly Zlotnik,1,* Yifei Chen,2,† István Z. Kiss,2,‡ Hisa-Aki Tanaka,3,§ and Jr-Shin Li1,∥

1Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
2Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, USA

3Department of Electronic Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
(Received 24 January 2013; revised manuscript received 2 April 2013; published 9 July 2013)

For many biological and engineered systems, a central function or design goal is to abbreviate the time

required to synchronize a rhythmic process to an external forcing signal. We present a theory for deriving

the input that effectively minimizes the average transient time required to entrain a phase model, which

enables a practical technique for constructing fast entrainment waveforms for general nonlinear oscil-

lators. This result is verified in numerical simulations using the Hodgkin-Huxley neuron model, and in

experiments on an oscillatory electrochemical system.
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The entrainment process is fundamental to numerous
scientific and engineering applications in which oscillating
systems are asymptotically synchronized to an external
periodic signal [1,2]. The ability to optimize entrainment
has important implications for achieving rapid cardiac
resynchronization [3] and quick adjustment from jet lag
[4], maximizing the growth rate of plants [5], and imple-
menting phase-locked loop circuits and injection-locked
microintegrated oscillators [6]. When the weak pertur-
bation approximation is made, a rescaling of the phase
response curve (PRC) was shown to be the minimum
energy signal for spiking or entraining oscillators at a given
period [7–9], and a weighted sum of appropriately shifted
PRCs maximizes the range of frequency detunings for
which entrainment occurs [10,11]. An alternative essential
objective is to minimize the time to entrainment at a given
forcing signal energy, in order to establish a fixed phase
relationship between the system and forcing signal as
soon as possible after the forcing is applied [12]. This
notion of fast entrainment can also be used to minimize
the time required to reestablish entrainment after interrup-
tions caused by disturbances [13].

In this Letter, we use phase model reduction to derive
an asymptotically optimal waveform that maximizes the
average rate of entrainment for general weakly forced
nonlinear oscillators. The rate of entrainment is charac-
terized by the coefficient of exponential decay in the
phase difference between the system and forcing signal.
We present a theory by which the entrainment time scale
is minimized for a specified forcing energy, where the
optimal waveform is a sum of the PRC and its derivative
with weights that depend on the difference between
the natural and forcing frequencies. These findings can
be applied to weakly nonlinear oscillators just past the
Hopf bifurcation, as well as strongly nonlinear relaxation
oscillators. We confirm our results with numerical simu-
lations using the Hodgkin-Huxley (HH) neuron model, as
well as in experiments on an oscillatory chemical system

arising through the electrodissolution of nickel in sulfuric
acid.
Phase coordinate transformation is a model reduction

technique that is useful for examining nonlinear oscillating
systems [14,15], and can also be used for system identi-
fication when the dynamics are complex or unknown [2].
Such models have been studied extensively, with a particu-
lar focus on neural [14,16] and electrochemical [17–19]
systems. Consider a full state-space model described by a
smooth ordinary differential equation system _x ¼ fðx; uÞ,
xð0Þ ¼ x0, where xðtÞ 2 Rn is the state and uðtÞ 2 R is
a control, with an attractive, nonconstant limit cycle
�ðtÞ ¼ �ðtþ TÞ that satisfies _� ¼ fð�; 0Þ on the periodic
orbit � ¼ fy 2 Rn: y ¼ �ðtÞ for 0 � t < Tg � Rn. This
system is reduced to a scalar phase equation

_c ¼ !þ Zðc Þu; (1)

where ! is the natural frequency of oscillation, Z is
a smooth PRC, and c ðtÞ is the asymptotic phase [20].
The model is valid for inputs u such that the state-space
system remains within a neighborhoodU of � [21], and the
PRC can be computed numerically [14,22,23].
The primary objective in entrainment design is to lock

the system to an input with the desired frequency � using
a control uðtÞ ¼ vð�tÞ where v is 2� periodic. We make
the weak perturbation approximation, i.e., v ¼ "v1 where
v1 has unit energy and " � 1, so that given this control
the actual state of the system is guaranteed to remain in U,
and the phase model (1) remains valid. We define a slow
phase variable�ðtÞ ¼ c ðtÞ ��t that satisfies the dynamic

equation _� ¼ _c �� ¼ �!þ Zð�tþ�Þvð�tÞ, where
�! ¼ !�� denotes the detuning between the natural
and forcing frequencies. To study the asymptotic behavior
of the slow phase, we eliminate the explicit dependence on
time on the right-hand side by using formal averaging [17].
Given a periodic forcing with frequency �, we denote
the forcing phase � ¼ �t. We also define an averaging
operator h�i: P ! R on the set of 2�-periodic functions by
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hxi ¼ 1=ð2�ÞR2�
0 xð�Þd�. The weak ergodic theorem for

measure-preserving dynamical systems on the torus [24]
implies that for any periodic function v, the interaction
function

�vð�Þ ¼ hZð�þ�Þvð�Þi
¼ 1

2�

Z 2�

0
Zð�þ�Þvð�Þd�

¼ lim
T!1

1

T

Z T

0
Zð�tþ�Þvð�tÞdt (2)

is a smooth function in P . Using the weak perturbation
approximation and the formal averaging theorem [25],
the time-averaged slow phase dynamics are, up to Oð"2Þ,

_’ ¼ �!þ�vð’Þ: (3)

Equation (3) is used to study the asymptotic behavior of (1)
under periodic forcing. We say that the system is entrained
by a control u ¼ vð�tÞ when (3) satisfies _’ ¼ 0, which
eventually occurs if there exists a phase ’� satisfying
�!þ�vð’�Þ ¼ 0. For nonzero control waveform v and
nonzero PRC Z, the function �vð’Þ is not identically zero,
so when the system is entrained there exists at least
one ’� 2 ½0; 2�Þ that is an attractive fixed point of (3).
We have shown that the minimum energy periodic wave-
form that entrains a single oscillator with natural frequency
! to a target frequency � is a rescaling of the PRC, given
by vð�Þ ¼ ��!Zð�Þ=hZ2i [9,11].

Our goal here is to entrain the system (1) to a target
frequency � as quickly as possible by using a periodic
control v of fixed power P ¼ hv2i. Ideally, the interaction
function would be of a piecewise-constant form, so that the
averaged slow phase ’ converges to a fixed point ’� at a
uniform rate from any initial value. However, the disconti-
nuity as ’ ! ’� would result in a singularity in the control
v, making it infeasible in practice. An alternative is to
maximize j _’�j, the rate of convergence of the averaged
slow phase in the neighborhood of its attractive fixed point
’�. The calculus of variations can then be used to obtain a
smooth optimal candidate solution that also performs well
in practice. When the system (3) is entrained by a control
v, there exists an attractive fixed point ’� satisfying
�vð’�Þ þ�! ¼ 0 and �0

vð’�Þ< 0, where 0 is the differ-
entiation operator. In order to maximize the rate of entrain-
ment in a neighborhood of ’� using a control of power P,
the value of j _’j should be maximized for values of ’ near
’�, which occurs when ��0

vð’�Þ is large. This results in
the following problem formulation for fast entrainment:

max
v2P

J ½v� ¼ ��0
vð’�Þ (4)

s:t: hv2i ¼ P (5)

�vð’�Þ þ�! ¼ 0: (6)

The constraints can be adjoined to the objective using
multipliers � and � to yield the formulation

J ½v� ¼��0
vð’�Þþ�ðhv2i�PÞþ�ð�vð’�Þþ�!Þ

¼�hZ0ð�þ’�Þvð�Þiþ�ðhv2i�PÞ
þ�ðhZð�þ’�Þvð�Þiþ�!Þ

¼ 1

2�

Z 2�

0
ðvð�Þ½�Zð�þ’�Þ�Z0ð�þ’�Þþ�vð�Þ�

��Pþ��!Þd�: (7)

The associated Euler-Lagrange equation is

�Zð�þ ’�Þ � Z0ð�þ ’�Þ þ 2�vð�Þ ¼ 0; (8)

and solving for v yields the candidate solution

vð�Þ ¼ 1

2�
½Z0ð�þ ’�Þ ��Zð�þ ’�Þ�: (9)

The multipliers � and � can be found by substituting (9)
into the constraints (5) and (6). This yields the equations

1

4�2
½hðZ0Þ2i � 2�hZ0Zi þ�2hZ2i� ¼ P; (10)

1

2�
½hZ0Zi ��hZ2i� ¼ ��!: (11)

Because Z is 2� periodic, one can show, e.g., using
Fourier series, that hZ0Zi ¼ 0, so that (11) easily yields
� ¼ 2�!�=hZ2i. Substituting this result into (10) leads to
a quadratic equation (10) for �. Now, by substituting (9)
into �0ð’�Þ ¼ hZð�þ ’�Þvð�Þi we obtain �0ð’�Þ ¼
hðZ0Þ2i=ð2�Þ, so we choose � < 0 when solving (10) for
� in order to maximize the objective in (4). Thus the
optimal waveform and multiplier simplify to

vð�Þ ¼ Z0ð�Þ
2�

��!Zð�Þ
hZ2i ; �¼�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðZ0Þ2i

P� ð�!Þ2
hZ2i

vuuut ; (12)

where we disregard the phase shift ’�, because the entrain-
ment process is asymptotic. For zero frequency detuning,
the optimal waveform is a rescaling of the derivative Z0
of the PRC. As j�!j increases, v continuously transforms
towards Z, which is the minimum energy waveform for
frequency control [9]. This transition reflects the concep-
tual tradeoff between the fast entrainment objective (4) and
frequency control constraint (6), which can be satisfied
only when P> ð�!Þ2=hZ2i.
Consider a system with a sinusoidal PRC, given by

Zð�Þ ¼ a sinð�Þ. Using angle sum identities and the fact
that in this case hðZ0Þ2i ¼ hZ2i, one can show that v is
of form vð�Þ ¼ P sinð�Þ. Indeed, for the case of a sinusoi-
dal PRC, a sinusoidal input optimizes the minimum energy
[9] and rapid phase-locking objectives simultaneously.
However, the utility of our approach is most evident for
oscillating systems with complex dynamics, in particular
those that exhibit relaxation, and hence higher harmonics
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in the PRC. As an example, consider the HH system [26],
which is a fundamental model used in the study of neural
dynamics [11]. When the baseline current Ib injected into
the axon is sufficiently high, the voltage V spikes repeat-
edly. Our goal is to modulate the additional injected current
IðtÞ to entrain the spiking frequency to a desired target� in
as short a time as possible. We first reduce the HH system
to a phase model as in (1) where u ¼ IðtÞ, where
! � 0:429 rad=sec, and the PRC Z is given in Fig. 1(a).
After selecting the control power P and the target fre-
quency �, we use (12) to compute the optimal waveform
v, which is shown in Fig. 1(b). Numerically, we use the
Fourier series coefficients of Z to evaluate expressions
derived from the PRC, such as Z0, hZ2i, and so on. In this
computational example, we focus on initial convergence
rates for fast entrainment, which can be quantified by the
rate k at which the phase difference between successive
interspike intervals converges exponentially to zero,
according to �’n ¼ e�kn, as shown in Fig. 2. The optimal

waveform (12) achieves a significantly greater average rate
k for all values of � and initial states on �.
The experimental utility of the phase model technique

for fast entrainment is demonstrated by manipulating
an oscillatory chemical process [27]. A standard three-
electrode setup was used with a 1 mm diameter nickel
working, a Hg=Hg2SO4=ðsatÞK2SO4 reference, and a Pt
coated Ti rod counterelectrode immersed in 3 mol/L sul-
furic acid solution at 10 	C. The nickel working electrode
was polarized with a potentiostat (Gamry Instruments,
Reference 600) at a circuit potential V ¼ V0 þ AFð�Þ,
where A and F are the forcing amplitude and waveform,
respectively, and V0 is the base potential. Each forcing
waveform F has power P ¼ 0:5. The current, proportional
to the dissolution rate, was measured by the potentiostat
at a rate of 200 Hz. When 1 k� resistance was attached to
the nickel wire, nonlinear current oscillations with a period
of 2.11 s were obtained at V0 ¼ 1:15 V as shown in the
inset of Fig. 3. In each instance of the experiment, the PRC,
such as the example in Fig. 3(a), was obtained using the
pulse perturbation method [10,28]. The phase of the oscil-
lation was obtained using the linear interpolation technique
[2] by setting the phase of the nth current peak to 2�n. The
transformation of the PRC as the circuit potential increases
has been previously analyzed in detail [28].
Using (12), an optimal fast entrainment waveform

was constructed for equal forcing and natural frequencies,
� ¼ !, in order to remove the effect of the frequency
control constraint (6). When the optimal waveform with
amplitude of A ¼ 12:5 mV was applied to entrain the free-
running chemical oscillator, the phase difference between
the current oscillations and the forcing signal, shown in
Fig. 4(a), monotonically decreased until a final phase
difference of �f ¼ 5:51 rad was attained after 30 sec.

The behavior of the phase difference ��ðtÞ¼�ðtÞ��f

after 20 sec can be closely described by an exponential
decay ln½��ðtÞ=��ð0Þ� ¼ �kt, which is shown in
Fig. 4(b), with a rate of entrainment k ¼ 0:243 s�1 for
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FIG. 1. (a) PRC of the HH model; (b) Optimal fast entrainment
waveform v for HH system at � ¼ ! and P ¼ 0:1 mW.

1 2 3 4 5
−0.2

−0.1

0

0.1

0.2

0.3

n

∆φ
n

sin
prc
opt

1 2 3 4 5
0

2

4

6

8

10

n

lo
g|

∆φ
n|

sin
prc
opt

θ

Ω
/ω

1 2 3 4 5 6

1.02

1.01

1

0.99

0.98 −1

−0.5

0

0.5

1

1.5

2

2.5

sin prc optimal
0

0.2

0.4

0.6

k

FIG. 2 (color online). Simulations with the HH model:
(a) Convergence of phase difference �’n between interspike
intervals; (b) Exponential fit for k when � ¼ 1:01! and P ¼
0:5. The k values are 0.5415, 0.9510, and 1.4139 for sine, PRC,
and optimal waveforms, respectively. (c) Initial convergence rates
k (in color) for 5 cycles with � 2 ½0:98!; 1:02!� and �ð0Þ 2
½0; 2��when using the optimal waveform. (d) Average initial k on
ð�; �ð0ÞÞ 2 ½0:98!; 1:02!� 
 ½0; 2�� for sine, PRC, and optimal
waveforms is 0.3933, 0.5365, and 0.7691, respectively. Initial
divergence takes place in 7.69%, 12.73%, and 6.04% of initial
conditions for sine, PRC, and optimal waveforms, respectively.

FIG. 3 (color online). Electrodissolution experiments: (a) PRC
and current waveform (inset) of the electrochemical oscillations.
The PRC is measured by stimulating the system using a se-
quence of pulses (A ¼ 200 mV magnitude and � ¼ 0:05 s pulse
width) and measuring the corresponding phase shift (�) as a
function of the phase; Z ¼ �=ðA�Þ rad=mV=s measurements
(dots) and Fourier fit with five harmonics (curve). (b) Optimal
waveform using (12) with � ¼ !, P ¼ 0:5, and the PRC in (a).
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the optimal waveform. This rate was found to be lower
for other waveforms such as sine and the PRC Z itself, as
shown in Figs. 4(a) and 4(b). To compensate for mea-
surement errors and data processing inaccuracies, we
measured the rate k at 7 amplitudes A between 2.5 and
15 mV. The slopes � of the k vs A plots in Fig. 4(c)
correspond to ��0

vð’�Þ for normalized PRC and v, and
are compared, along with values predicted using the
estimated PRC for each experiment, in Fig. 4(d). The
optimal waveform performs significantly better.

The proposed technique for constructing optimal fast
entrainment waveforms can be applied to any nonlinear
oscillator, and requires no knowledge about its initial state.
Entrainment is achieved over the minimum number of
cycles possible for a given control energy such that phase
model approximation and averaging remain valid. The
conditions required for such approximations to be appro-
priate for entrainment have been explored in previous work
[11,21]. When the initial slow phase of the system is far
from a stable fixed point, several cycles may be required
for convergence to the phase-locked state to be realized,
and this occurs least on average for the optimal waveform.
In contrast to previous studies on the control of oscillators
using phase models [7–10,20,21], the derivative of the
phase response curve (PRC) plays an important role in

addition to the PRC itself. The methodology is promising
for fast reestablishment of entrainment in oscillators that
intermittently break phase locking due to environmental or
internal effects, such as biological systems with fluctua-
tions in chemical reaction rates due to the small number of
molecules in a cell [29]. Finally, observe that our method-
ology is suitable for weak phase resetting, while strong
resetting requires control approaches that do not depend
on averaging but involve substantial changes to the state of
the oscillator.
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