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Quantum Nonreciprocity of Nanoscale Antenna Arrays in Timed Dicke States
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We predict a linear nonreciprocal effect that is based on the timed Dicke states in an ensemble of
dipole-dipole coupled oscillators. This effect is examined on a nanoscale antenna array comprising two-
level identical emitters. The studied nonreciprocity, which has no analogs in classical antennas, manifests

itself in strong characteristic asymmetry of the radiation pattern, even for a single-photon laser pumping.

Promising applications of our results for remotely tunable nanoantennas and nanocircuit elements are

discussed.
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Introduction.—The Lorentz reciprocity theorem is one of
the fundamental principles of electrodynamics. It states
that fields E|,(r) induced by dipoles p;, located at r; ,,
respectively, are related by the reciprocity relation,
E,(ry)p, = E,(r;)p; [1]. One consequence of the reci-
procity theorem is the symmetry of the scattering matrices
at any given frequency. Because of the reciprocity theorem
the transmitting and receiving field patterns of a reciprocal
antenna are identical [2]. The reciprocity theorem is a
consequence of the symmetry of kinetic coefficients
(Onsager principle) [3]. Violation of the reciprocity theo-
rem is possible in the cases of broken time reversal sym-
metry, when the Onsager principle in its ordinary form
becomes invalid (for example, for uniformly rotating
bodies and magnetized ferrites [3]). Nonreciprocity offers
a number of means to control the electromagnetic field
propagation (e.g., for separation of signals that travel in
opposite directions). The classical mechanisms of nonreci-
procity are of macroscopic nature, and therefore cannot be
used in nanooptics and nanoelectronics. Thus, the search
for new nonreciprocal phenomena, which are manifested at
the nanometric scale is of fundamental physical interest.
Such mechanisms have been discussed in earlier works: for
example, Rabi-waves propagation in the quantum dots
chains [4,5] and a “moving” photonic crystal generated
in a three-level electromagnetically induced transparency
medium [6]. However, they are predicted only for the
regime of strong coupling of condensed matter with elec-
tromagnetic field. Nonreciprocal phenomena in the chains
of plasmonic nanoparticles were considered in [7,8]. Here,
the nonreciprocity manifests itself under simultaneous
magnetization and geometrical chirality of the chain.

The coherent states of two-level quantum emitters
coupled by the dipole-dipole (d-d) interaction have been
extensively discussed by Scully’s group in a series of
recent publications [9—13]. This concept leads to the gen-
eralization of the usual Dicke states [14] for the case where
atoms at different positions are excited at different times
(so called, timed Dicke states). To that end, it was stated
‘... that the timing of the atomic excitation is the key
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physical process behind the present directional spontane-
ous emission; i.e., ‘timing is everything”’ [9]. The main
result of this Letter is that such timing even in the linear
regime leads to the appearance of nonreciprocity, which is
not associated with magneto-optic or bianisotropic media
and doesn’t have any analogs in the classical electrody-
namics. This effect is demonstrated by the example of a
quantum nanoantenna array, because such devices are of
great interest in modern nanooptics. Various types of
antennas working in the optical regime at nanometer scale
have been demonstrated [7,8,15-24], and thereafter the
language of microwave circuits and antennas was success-
fully adopted for optical antennas [16,22], single two-level
emitter [23], and the pair of d-d interacting two-level
dipoles [24]. The majority of nanoantennas that have
been studied so far manifested the reciprocal behavior,
with the exception of the magnetized chiral chains of
plasmonic ellipsoids [7,8]. Dynamic control of the optical
field in these nanoantennas is performed by the bias mag-
netic field. The nonreciprocity mechanism presented in
this Letter appears promising for the optical scanning of
the radiation patterns by a variation of the laser pump-
beam direction.

Model and generalized susceptibility formalism.—We
begin by considering a one-dimensional (1D) array of N
identical two-level emitters (for example, semiconductor
quantum dots, or cold atom chains in optical lattices)
coupled by d-d interactions. Emitters are positioned along
the z axis at points R,,,, m = 1, 2, ..., N with separation a.
Every emitter is characterized by the ground state |],),
excited state |1,), and the energy of resonant transition
hwg. Let us assume that the system works in a “trans-
mitting regime.” It means that the antenna transforms the
near field induced by the currents in the input (feed)
terminals to the propagating far field. The near field
throughout the Letter will be named an external field and
denoted as EM'(R,, t) = Re[ENF(R,)e ®"]. Tt corre-
sponds to the classical value and has a quasistatic structure.

Antenna array radiation is described by the total

Hamiltonian H =ﬁ()+ﬁ,, where ﬁo represents the
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antenna array Hamiltonian in the absence of the external
field (it includes the internal energy of all emitters and the
energy of d-d interactions). Hamiltonian A, corresponds to
the interaction of the antenna array with external field and
therefore reads

1:11:_//«

n

N
EN(R,, e, (S, +5,). (D
=1
where S =[1,)L, I, Sy =IL)XI,| are, respectively,
creation-annihilation operators of excitation in the nth
emitter, u is the dipole moment, and e, is the unit vector
of the dipole orientation. Let us assume that the system is
initially prepared in an arbitrary equilibrium state and it is
perturbed by the external field. This field induces
the observable polarization in the nth emitter, whose com-
plex amplitude is expressed as P, = u3V_ a,,(w) X
(e, ® e, )ENF(R,), where a,,,(w) is a partial generalized
susceptibility of the mth emitter to the near field in the nth
emitter. This polarization produces a propagating far field
EF(r) that is naturally regarded as the system response to
the “generalized force”, whose role is assumed by the near
(external) field. Note also that the polarization vanishes if
the external field tends to zero. The antenna response to the
generalized force is described by the radiation pattern,
which plays the role of the “‘generalized susceptibility”
and can be expressed using the general Kubo formula [25].
Let us present the far field in the spherical coordinate
system {r, 6, ¢} with the origin centered at the first emitter
(n = 1). Hereafter, we will follow the conventional termi-
nology of the antenna theory [2]. Thus, the total field
radiated by an N-element array is equal to the field of a
single element positioned at the origin (the Ist one in our
notation) multiplied by a factor (AF)y, which is referred to
as an array factor. Thus, the far field of the N-element array
reads (see Supplemental Material [26])

E 5 (r) = Eg((AF)y, 2)

where

Pu . - roer
Egi(r) :T’uel(kr wt)all(w)(l - 2 )

X (e,u ® e,u,)EgF(Rl) (3)

is the field of a single element, T is the unit tensor, and

N N

(AF)y = C 3 3 (e BN (R,)a,, (@)l Vet @)
n=1m=1

is the array factor with C = [(e ,E5F(R))a;;(w)] ™! being

the normalization coefficient. According Kubo relation

[25], the partial generalized susceptibility can be expressed

in terms of Heisenberg operators S, (1) = S () + S, (¢) as

am(@) =5 [T, 8,0) = $,08,(dr, ©)

where () means averaging over the given quantum state of
the system.

Timed Dicke state in nanoantenna array: Effect of
nonreciprocity.—For antenna array analysis, it is conve-
nient to use so-called timed Dicke basis [13], for which the
first excited state in the notation of [13] reads

1 & .
W) = |By) = N DU Ty eI (6)
m=1

where @ is a given phase shift (timing factor). As has been
shown by Scully [13], the probability amplitude |B)
for | B,) state for large N obeys the equation 8, = —(I" +
Iy + iSSy) By, where I is the single emitter decay rate, 'y
is the collective decay rate of the array, while Jy is the
collective Lamb shift [13]. This expression allows one to
consider |B,)) as a quasistationary eigenstate of the antenna
array, where its eigenvalue can be found as a complex
eigenvalue of the operator of the d-d interactions given
in [26,27]. Let us note that this operator corresponds to the
presence of the counterrotating states with two excited
atoms and one virtual photon with negative energy, which
must be taken into account for the correct description of the
d-d interactions [28]. For detailed calculations of collec-
tive decay rate and collective Lamb shift for antenna array,
see [26]. Principles of preparing the |B,) state in the single
photon laser experiments were discussed in [9,13].

The averaging of general relation (5) with respect to the
timed Dicke state | B,) reads

® 1 ei(n—m)fb
(@, @) = ﬁ<w —wg — Iy + T +Ty)

e—i(n—m)d)
- i ) o
o+ wy+ Iy +iC+Ty)

(here we take into account that for the |B,) state (S;; ) =
(8,,8.) = 0). Originally, the factor ¢ =77 with infinitesimal
positive parameter n has been included in the Kubo rela-
tion to force the response decay in time when 7 — 0. In
the last stage of the calculation therefore the limit n — +0
was taken (stationary state). We relate the Kubo formula to
the | B,) state which is a quasistationary one, following the
concept of the resonance on the quasidiscrete level [29].
Thus, we keep in the final result the decay factor equal to
the collective spontaneous emission decay rate. Let us
assume that the near field varies along the array as in a
traveling wave, thus ENF(R,) = ENF(R)e"~ DB where
B is an arbitrary phase shift. Thus, the array factor (4) may
be represented as [30]

sinW_
W
N sin(=)
sinW

N sin(%)’

(AF)y = A_(w, B, P)

t A (o, B D) )

where
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Ai(w, B, D) = sin(N('Bzi q)))[sin<'8 § q))
X ap(o)@F oo+ Iy + il + FN)]_I,

V. = Nka(cos® F £)/2, £ = ®/ka (see Supplemental
Material [26]).

Analysis of the Eq. (8) shows that the array in the
considered |B,) state corresponds to a system of two
macroscopic arrays with different linear phase progres-
sions [31]: the total array factor is presented as a superpo-
sition of two partial array factors f.(0) = sinW./
Nsin(W../N). These factors correspond to single-beam
arrays with phase shifts +® and appear in (8) with the
amplitude factors A~ (w, B, @), respectively.

It is easy to see from (7) that for the |B,) state the
symmetry relations for generalized susceptibilities satisfy
(@, D) = a,, (0, —P). This situation is analogous to
the Onsager relation for kinetic coefficients for uniformly
rotating body and for bodies in an external magnetic field
[32] (in this case phase ® plays the role of rotation veloc-
ity, or magnetic field induction). It means that array factor
(AF)y is not invariant under the exchange ENF(R,) —
ENF(Ry_,+1). Therefore, we have the transformation

(AF)x(0, B, @, ®) = (AF)y(7 — 6, =B, 0, =®)  (9)

but not (AF)y(6, B, w, ®) = (AF)y(7 — 6, — B, , D).
Expression (9) shows that with the spatial rotation of the
antenna array by 180° one must replace ® — —® to keep
the physical state (like the sign of the angular velocity or of
magnetic field is changed in [32]).

Thus, the antenna array manifests the nonreciprocal
properties in the |Bg)-state, which are illustrated by nu-
merical results presented in Figs. 1-3.If | €| = 1, each term
in (8) creates a main lobe, which represents a conical wave.
Their direction of propagation is determined by cosfy =
+ ¢, and therefore depends on the phase shift ®@. Thus, the
variation of phase @ allows one to perform spatial scan-
ning by the radiation pattern of the array in the |B) state
(for a detailed picture of spatial scanning, see figures in
[26]). The nonreciprocity manifests itself in the different
peak field magnitudes in the two lobes oriented at angles 6,
and 7 — 6,. Two different pictures of nonreciprocity are
possible. In the first one which may be called ‘“weak non-
reciprocity”’, the orientation of the primary (strongest)
main lobes, that are normalized to unity, is invariant with
respect to the array rotation by 180 degrees. Array rotation
affects only the peak field magnitude in the secondary main
lobe (see Fig. 1). In the second nonreciprocity manifesta-
tion, which may be called ‘“‘strong nonreciprocity’, the
array rotation is accompanied by the exchange between the
primary and secondary main lobe orientations (for details,
see numerical results in [26]). For specific values of ¢ the
antenna main lobe direction is not affected by the sign of 3,
while the secondary main lobes are strongly suppressed.

90

270

FIG. 1 (color online). Radiation patterns in the regime of weak
nonreciprocity: antenna array comprises N = 16 elemental di-
poles with ka = 7, kga = 1.27r, and ¢ = 1.8: red line—8 =
/4, dashed green line—B = — /4. Dotted blue line denotes
the array axis. The inversion of the sign of B leads to the
symmetric turn of the main lobes with respect to the axis § =
7r/2 accompanied by a strong variation of secondary main lobe
magnitude.

270

FIG. 2 (color online). Radiation patterns of a linear array in the
axial radiation regime: ¢ = 1.0. All other parameters are the
same as in Fig. 1. The pattern symmetry corresponds to the array
reciprocity.
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FIG. 3 (color online). Radiation patterns in the regime of
extreme nonreciprocity: & = 1.75. The inversion of the sign of
B does not affect the direction of the primary main lobe (while
the secondary main lobes are strongly suppressed). All other
parameters are the same as in Fig. 1.

Such behavior of the radiation pattern may be called
“extreme nonreciprocity” (see Fig. 3). For [£] — 1 two
main lobes are combined into a single one (Fig. 2),
which corresponds to the axial radiation regime and dis-
appearance of the nonreciprocity. For ka=2w(N—1)/
N(1+1€]), the number of main lobes increases, and the
directivity of the antenna is reduced.

For an in-phase excitation of the antenna array (8 = 0),
we have a symmetry relation (AF)y(6,0, w, ®) =
(AF)y(7 — 6,0, w, @), which leads to the reciprocity. To
understand the role of quantum coherence in the appear-
ance of nonreciprocity, it is instructive to consider the
process of array radiation in the ground state, which in
spinlike notation reads |Co)=]l]...ly). It is easy to see
that it corresponds to the time-reversal symmetry and
therefore reciprocity property because of (AF)y(0, B) =
(AF)y (7 — 6, — B) (for details, see [26]).

Conclusion.—We predict the linear effect of nonrecipro-
cal light emission based on the use of emitters in the timed
Dicke states and demonstrated on nanoantenna arrays. This
effect is manifested in a characteristic asymmetry of the
radiation pattern; thus, a nanoantenna is well suited for its
experimental observation. This nonreciprocity appears
without magneto-optic or bianisotropic media due to the
time reversal asymmetry, which is stipulated by the direc-
tional single-photon resonant pumping. A similar
mechanism of nonreciprocity will be observed in nano-
plasmonics: an ensemble of emitters with d-d interactions
placed on the boundary between vacuum and noble metal

will produce an asymmetry of the dispersion character-
istics of the surface plasmon with respect to the direction of
propagation along the timing axis.

The effect predicted in this Letter looks promising for
various future applications. Since timed Dicke states may
be prepared by resonant laser pumping in the weak cou-
pling regime [9], nonreciprocal elements working in the
optical regime at nanometer scale can be driven with low-
intensity light. For example, dependence of the nonreci-
procity on the direction of pump pulse propagation opens
up possibilities for the remote scanning of optical
nanoantennas.

[1] L.D. Landau and E.M. Lifshitz, Electrodynamics of
Continuous Media, Course of Theoretical Physics Vol. 8
(Pergamon, New York, 1989).

[2] K. Balanis, Antenna Theory (John Wiley and Sons, Inc.,
New York, 1997).

[3] L.D. Landau and E.M. Lifshitz, Statistical Physics,
Course of Theoretical Physics Vol. 5 (Pergamon,
New York, 1980).

[4] G.Y. Slepyan, Y.D. Yerchak, A. Hoffmann, and F.G.
Bass, Phys. Rev. B 81, 085115 (2010).

[5] G.Y. Slepyan, Y.D. Yerchak, S.A. Maksimenko, A.
Hoffmann, and F.G. Bass, Phys. Rev. B 85, 245134
(2012).

[6] D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers,
and S.-Y. Zhu, Phys. Rev. Lett. 110, 093901 (2013).

[71 Y. Hadad and B.Z. Steinberg, Opt. Express 21, A77
(2013).

[8] Y. Hadad, Y. Mazor, and B.Z. Steinberg, Phys. Rev. B 87,
035130 (2013).

[9] M.O. Scully, E.S. Fru, C. H.R. Ooi, and K. Wodkiewicz,
Phys. Rev. Lett. 96, 010501 (2006).

[10] A.A. Svidzinsky, J.-T. Chang, and M. O. Scully, Phys.
Rev. A 81, 053821 (2010).

[11] A.A. Svidzinsky, J.-T. Chang, and M.O. Scully, Phys.
Rev. Lett. 100, 160504 (2008).

[12] S. Das, G.S. Agarwal, and M. O. Scully, Phys. Rev. Lett.
101, 153601 (2008).

[13] M.O. Scully, Phys. Rev. Lett. 102, 143601 (2009).

[14] R.H. Dicke, Phys. Rev. 93, 99 (1954).

[15] P. Biagioni, Y.-S. Huang, and B. Hecht, Rep. Prog. Phys.
75, 024402 (2012).

[16] L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).

[17] L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).

[18] A. Alu and N. Engheta, Phys. Rev. Lett. 101, 043901
(2008).

[19] G.Y. Slepyan, M.V. Shuba, S.A. Maksimenko, and
A. Lakhtakia, Phys. Rev. B 73, 195416 (2006).

[20] G. Hanson, IEEE Trans. Antennas Propag. 53, 3426
(2005).

[21] P.J. Burke, S.1. Li, and Z. Yu, IEEE Trans. Nanotechnol.
5, 314 (2006).

[22] N. Engheta, Science 317, 1698 (2007).

[23] J.-1. Greftet, M. Laroshe, and F. Marquier, Phys. Rev. Lett.
105, 117701 (2010).

023602-4


http://dx.doi.org/10.1103/PhysRevB.81.085115
http://dx.doi.org/10.1103/PhysRevB.85.245134
http://dx.doi.org/10.1103/PhysRevB.85.245134
http://dx.doi.org/10.1103/PhysRevLett.110.093901
http://dx.doi.org/10.1364/OE.21.000A77
http://dx.doi.org/10.1364/OE.21.000A77
http://dx.doi.org/10.1103/PhysRevB.87.035130
http://dx.doi.org/10.1103/PhysRevB.87.035130
http://dx.doi.org/10.1103/PhysRevLett.96.010501
http://dx.doi.org/10.1103/PhysRevA.81.053821
http://dx.doi.org/10.1103/PhysRevA.81.053821
http://dx.doi.org/10.1103/PhysRevLett.100.160504
http://dx.doi.org/10.1103/PhysRevLett.100.160504
http://dx.doi.org/10.1103/PhysRevLett.101.153601
http://dx.doi.org/10.1103/PhysRevLett.101.153601
http://dx.doi.org/10.1103/PhysRevLett.102.143601
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1088/0034-4885/75/2/024402
http://dx.doi.org/10.1088/0034-4885/75/2/024402
http://dx.doi.org/10.1038/nphoton.2010.237
http://dx.doi.org/10.1103/PhysRevLett.98.266802
http://dx.doi.org/10.1103/PhysRevLett.101.043901
http://dx.doi.org/10.1103/PhysRevLett.101.043901
http://dx.doi.org/10.1103/PhysRevB.73.195416
http://dx.doi.org/10.1109/TAP.2005.858865
http://dx.doi.org/10.1109/TAP.2005.858865
http://dx.doi.org/10.1109/TNANO.2006.877430
http://dx.doi.org/10.1109/TNANO.2006.877430
http://dx.doi.org/10.1126/science.1133268
http://dx.doi.org/10.1103/PhysRevLett.105.117701
http://dx.doi.org/10.1103/PhysRevLett.105.117701

PRL 111, 023602 (2013)

PHYSICAL REVIEW LETTERS

week ending
12 JULY 2013

[24]

[25]

[26]

[27]
(28]

S. Mokhlespour, J. E. M. Haverkort, G.Y. Slepyan, S. A.
Maksimenko, and A. Hoffmann, Phys. Rev. B 86, 245322
(2012).

R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics
II:  Non-equilibrium Statistical Mechanics (Springer-
Verlag, Berlin, 1985).

See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.111.023602 for a
detailed derivation of the reported results and details
picture of the spatial scanning by the radiation pattern.
Z. Ficek and R. Tanas$, Phys. Rep. 372, 369 (2002).

Let us note that the existence of virtual processes leads to
the breakdown of the rotating-wave approximation for the
description of the d-d interactions. For detailed comments,
see Ref. [10].

[29]

(30]

(31]

(32]

023602-5

L.D. Landau and E.M. Lifshitz, Quantum Mechanics,
Course of Theoretical Physics Vol. 3 (Pergamon,
New York, 2003), Sect. 132.

In writing (8) the origin is moved to the antenna phase
center, and therefore the phase factor exp{i[(N—1)/2]
kacos@} is omitted.

J.L. Volakis, Antenna Engineering Handbook (McGraw
Hill, New York, 2007).

From the formal point of view, this property is stipulated
by the complex-valued wave function for the |B,) state.
The exchange ® — —® replaces it for the complex-
conjugated one, like a sign change of angular velocity or
of magnetic field in rotating or magnetized media, respec-
tively (see Ref. [3]).


http://dx.doi.org/10.1103/PhysRevB.86.245322
http://dx.doi.org/10.1103/PhysRevB.86.245322
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.023602
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.023602
http://dx.doi.org/10.1016/S0370-1573(02)00368-X

