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Nicolis and Piazza have recently pointed out the existence of Nambu-Goldstone-like excitations in

relativistic systems at finite density, whose gap is exactly determined by the chemical potential and the

symmetry algebra. We show that the phenomenon is much more general than anticipated and demonstrate

the presence of such modes in a number of systems from (anti)ferromagnets in a magnetic field to

superfluid phases of quantum chromodynamics. Furthermore, we prove a counting rule for these massive

Nambu-Goldstone bosons and construct a low-energy effective Lagrangian that captures their dynamics.
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Introduction.—Trying to understand collective behavior
of matter in nonlinear many-body systems is a challenge
common to many areas of physics. At long distances and
low temperatures, excitations with a vanishing or small gap
(mass) dominate the dynamics. The concept of spontane-
ous symmetry breaking has been crucial for its understand-
ing, as it unambiguously predicts the existence of gapless
excitations—the Nambu-Goldstone bosons (NGBs)—such
as phonons or magnons. For nearly five decades, however,
their correct counting and dispersion relations eluded
consistent understanding. Recently, we developed a unified
framework to determine the number and dispersion rela-
tions of NGBs [1,2], including their redundancies [3].

Cases where exact statements can be made about gapped
modes are rare, though. Kohn’s theorem states that a gas
of charged particles with Galilean invariance, when exposed
to a uniform magnetic field, sustains a collective mode
with the cyclotron gap [4]. Moreover, some soliton solutions
to nonlinear equations saturate Bogomol’nyi-Prasad-
Sommerfield bounds, allowing their energies to be deter-
mined based on symmetry alone [5], albeit with limited
applicability to observable systems. NGBs perturbed by
explicit symmetry-breaking effects acquire small gaps
and are usually called pseudo-NGBs [6]. Yet their gaps in
general can be computed only approximately.

Recently, Nicolis and Piazza [7] pointed out that the gaps
of pseudo-NGBs canbedetermined in special circumstances.
Considering Lorentz-invariant systems perturbed only by a
chemical potential whose charge operator is spontaneously
broken, they showed that the masses of some pseudo-NGBs
can be computed exactly and are free of radiative corrections.
We will call such states ‘‘massive NGBs’’ (MNGBs). In the
present Letter, we show that MNGBs appear in a much
broader class of systems; the theory need not be Lorentz
invariant, or the chemical potential operator spontaneously

broken. We provide a counting rule for the number of
MNGBs and construct an effective Lagrangian description
for them.
General argument.—Consider a many-body system

specified by the Hamiltonian H with an internal symme-
try group G. In order to describe states with finite charge
density, it is customary to introduce a chemical potential�

by ~H � H ��Q, whereQ is one of the generators ofG.

The vacuum j0i is defined as the eigenstate of ~H with the
lowest eigenvalue. Without loss of generality, we can take
~H j0i ¼ 0. Since the generators Qi of the Lie group G
commute with the Hamiltonian H , they are all time
independent in the Heisenberg picture defined by H ,

QiðtÞ �
Z

dxeiH t�iP�xj0i ð0Þe�iH tþiP�x; (1)

where j0i ðxÞ are the corresponding local charge densities.
When spontaneously broken, generators of the symme-

try group ~G of the full Hamiltonian ~H give rise to standard
massless NGBs. On the other hand, the observation made
by Nicolis and Piazza guarantees the existence of pseudo-
NGBs, created by spontaneously broken generators that
do not commute with Q, whose masses can be computed
exactly by group theory.
By the standard Cartan decomposition, explicitly broken

generators can be split into pairs Q��—the roots—such
that

½Q;Q��� ¼ �q�Q��; (2)

where Q�� are some complex linear combinations of
explicitly broken generators and ðQ��Þy ¼ Q��. Let us
now focus on the quantity �� � h0j½Qþ�ðtÞ; j0��ð0Þ�j0i,
which is manifestly time independent. Using Eq. (1),
inserting a complete set of eigenstates jn;pi of momentum

PRL 111, 021601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JULY 2013

0031-9007=13=111(2)=021601(5) 021601-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.021601


P and energy ~H , and carrying out integration over space,
we obtain

�� ¼ X
n

e�i½Enð0Þ��q��tjh0jj0þ�ð0Þjn; 0ij2

�X
n

ei½Enð0Þþ�q��tjh0jj0��ð0Þjn; 0ij2: (3)

Provided that �q� > 0, the time independence of the left-
hand side and Enð0Þ � 0 require h0jj0��ð0Þjn; 0i ¼ 0 for
each n. If �� is zero, implying h0jj0þ�ð0Þjn; 0i ¼ 0 for each
n as well,Q�R � Qþ� þQ�� andQ�I��iðQþ��Q��Þ
cannot be spontaneously broken. Namely, there is no local
field �ðxÞ such that h0j½Q�R;IðtÞ;�ð0Þ�j0i � 0.

On the other hand, if �� � 0, Q�R and Q�I are broken
spontaneously and there must be a state jn; 0i with mass

~H jn; 0i ¼ Enð0Þjn; 0i ¼ �q�jn; 0i (4)

such that h0jj0þ�ð0Þjn; 0i � 0 and h0jj0��ð0Þjn; 0i ¼ 0. This
is the MNGB associated with the pair Q��.

Our derivation clarifies several points on MNGBs. First,
the assumptions of the underlying dynamics being Lorentz
invariant andQ being spontaneously broken [7] can clearly
be dropped. Also, �� always plays the role of the order
parameter for charges Q�R;I. Finally, h0jj0��ð0Þjn; 0i ¼ 0
for all n means Qþ�j0i ¼ 0, while if �� is nonzero,
Q��j0i � 0. This observation leads to a simpler, albeit
less rigorous, understanding of MNGBs. Equation (2)

gives ½ ~H ; Q��� ¼ ��q�Q��, which implies that
Q��j0i has energy �q�. As there cannot be a state with
energy lower than the vacuum, Qþ�j0i has to vanish. Our
argument is reminiscent of Kohn’s theorem [4], allowing
for a unified comprehension of the two phenomena.

Number of MNGBs.—For a proper understanding of the
low-energy dynamics of the system, it is important to know
the number and dispersion relations of NGBs. Denoting the

broken generators of ~G as ~Qa, the former is given by [1,2]

nNGB ¼ nA þ nB;

nA ¼ nBG � rank~�;

nB ¼ 1

2
rank~�;

(5)

where nBG is the number of broken generators and

~�ab � �i lim
�!1

1

�
h0j½ ~Qa; ~Qb�j0i; (6)

with � being the spatial volume. The type A and B NGBs
generally have linear and quadratic dispersions and corre-
spond to type I and II in the Nielsen-Chadha theorem [8],
even though this is not always the case [9]. Each type B
NGB is described by a canonically conjugate pair of

broken generators ~Qa and ~Qb with nonzero ~�ab; hence,
two broken symmetries count as one degree of freedom,
whereas type A NGBs are stand alone as in the original
Nambu-Goldstone theorem.

Here we address the question of counting the MNGBs
[10]. Namely, we show that their number is given by

nMNGB ¼ 1

2
ðrank�� rank~�Þ; (7)

where the matrix � is defined analogously to Eq. (6) for

all generators of G instead of just ~G. To that end, we have
to further specify the structure of the Lie algebra. First, let
us choose the maximal number of mutually commuting

generators of ~G, including Q itself, to form the Cartan
subalgebra. By a proper choice of the vacuum j0i, we can
ensure that these Cartan generators are the only generators

of ~G that can have a nonzero vacuum expectation value [1].
This alone does not prevent the explicitly broken generators

from acquiring expectation values. Yet, ��q�h0jQ��j0i¼
h0j½�Q;Q���j0i¼h0j½Q��;

~H �j0i¼0 because of ~H j0i ¼
0 so that h0jQ��j0i must vanish for any nonzero q�.
If we arrange the generators as Qi ¼ ðQ1R;Q1I; . . . ; QmR;

QmI; ~Q1; . . . ; ~Qdim ~GÞ, where m � ðdimG� dim ~GÞ=2, the
matrix � becomes block diagonal, � ¼ diagð2i�2�1; . . . ;
2i�2�m; ~�Þ, �2 being the second Pauli matrix. Thus,
ð1=2Þðrank�� rank~�Þ counts the number of nonzero ��’s.
Assuming that there is at most one MNGB for each pair of
Q��, this proves our counting rule (7). This assumption is
natural if we can identify the MNGB state with Q��j0i in a
suitable large-volume limit.
In the following, we provide examples of MNGBs,

demonstrating the validity of Eq. (7) in physically interest-
ing systems [11].
Ferromagnet.—The Hamiltonian of a ferromagnet enjoys

the internal G ¼ Oð3Þ symmetry group of spin rotations.
In the ground state, individual spins are aligned, breaking
this symmetry down to its O(2) subgroup. The two broken
generators give rise to a single type B NGBwith a quadratic
dispersion relation at low momentum—the magnon [2,8].
Consider now switching on a uniform magnetic field B

oriented in the z direction. This amounts to breaking the

symmetry explicitly to ~G ¼ Oð2Þ by adding to the
Hamiltonian ��mBSz (�mB> 0), where S is the total
spin operator and �m is the magnetic moment. This term
can be viewed as a chemical potential � ¼ �mB for the
generator Q ¼ Sz. Given that ½Sz; S�� ¼ �S� where
S� � Sx � iSy, S� must excite a MNGB of gap �, which

is just the magnon with energy lifted by the magnetic field
[13]. The operator Sþ annihilates the ground state. Both of
these assertions are easy to understand from the fact that
the vacuum corresponds to the state with maximum spin in
the direction of the magnetic field and the magnon to an
excitation caused by flipping one of the spins. Note that the
counting rule (7) predicts the correct number of MNGBs,
that is, nMNGB ¼ ð2� 0Þ=2 ¼ 1. Also, the generator Q in
this example is not spontaneously broken, in contrast to
the assumption made in Ref. [7].
Antiferromagnet.—In the absence of a magnetic field,

assume the spins are oriented alternately along the z axis;
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G ¼ Oð3Þ is broken to O(2) just like in a ferromagnet. In
this case, there are two type A NGBs, one for each broken
generator.

Applying a magnetic field along the z axis leads to an
instability as the NGBs attempt to acquire masses �� ¼
��mB. The ground state rearranges with alternating spins
pointing in an orthogonal direction instead, say along the
x axis. ThenQ ¼ Sz is a spontaneously brokengenerator that

commuteswith ~H and creates a gapless typeANGB.On the
other hand, the pair of generators Sx, Sy is explicitly broken,

creating a MNGB with gap �. The magnetic field induces
a small magnetization along the z axis, and hence, �xy¼
h0j½Sx;Sy�j0i�0. Consequently, nMNGB¼ð2�0Þ=2¼1,

consistent with Eq. (7). Such MNGBs have been discussed
before in the context of the electron spin resonance
phenomenon [14].

Relativistic Bose-Einstein condensation.—As an explicit
examplewhere ~� � 0, consider a theory of a complex scalar

doublet � with a global ~G ¼ SUð2Þ � Uð1Þ symmetry,

L ¼ D��
yD���M2�y�� �ð�y�Þ2; (8)

where D0� � ð@0 � i�Þ�. This model features a relativ-
istic Bose-Einstein condensation (BEC) phase for �>M,
in which the symmetry is spontaneously broken to a Uð1Þ0
subgroup. The three broken generators produce two NGBs,
one type A and one type B [15], consistent with Eq. (5),
since one of the SU(2) charges develops nonzero density in
the ground state; hence, rank~� ¼ 2.

The type B NGB in this model has an ‘‘antiparticle,’’
carrying opposite charge. Its mass equals 2� and does not
receive radiative corrections [16]. To see why, note that
when � ¼ 0, the Lagrangian enjoys an extended internal
symmetry, G ¼ SOð4Þ ’ SUð2ÞL � SUð2ÞR. This is most
easily seen by defining a 2� 2 matrix � ¼ ð�; i�2�

	Þ,
which transforms under G as � ! UL�Uy

R. Denote the

generators of G as ~L and ~R, respectively; they are both
given by a half of the Pauli matrices. The SU(2) rotations
of the doublet� now correspond to SUð2ÞL; the U(1) phase
transformations are generated by 2R3. The remaining two
generators of SUð2ÞR are explicitly broken by the chemical
potential �. In the BEC phase, the condensate can be
chosen as h0j�j0i 
 1 so that they are also broken sponta-
neously. Since the R� generators of SUð2ÞR satisfy the
commutation relation ½2R3; R�� ¼ �2R�, Eq. (3) implies
that R� creates a MNGB with mass 2�, in agreement with
the explicit calculation. Indeed, nMNGB ¼ ð4� 2Þ=2 ¼ 1.
This example obviously admits a generalization to a large
class of relativistic linear sigma models with chemical
potential [17,18], the key ingredient being an extended
global symmetry when the chemical potential is set to zero.

QCD-like theories.—Quantum chromodynamics (QCD)
with two degenerate quark flavors possesses an approxi-
mate global SUð2ÞL � SUð2ÞR chiral symmetry. A nonzero
quark mass breaks this explicitly to the G ¼ SUð2ÞV
subgroup generated by ~V � ~Rþ ~L. The chiral condensate

in the QCD vacuum breaks the symmetry spontaneously in
the same way, resulting in three pseudo-NGBs in the
spectrum: the pions.
Nonzero chemical potential �I for V3 breaks the exact

symmetry G further to its ~G ¼ Uð1ÞI subgroup, generated
by V3. Whereas the mass of the neutral pion is insensitive
to �I, the masses of the charged pions become m� ��I.
Consequently, once �I > m�, the positively charged pion

undergoes BEC, breaking the residual ~G symmetry
spontaneously [19]. Therefore, the spectrum in the pion
BEC phase exhibits one true, type A NGB. However, the
ground state has a nonzero isospin density h0jV3j0i ¼
�ih0j½V1; V2�j0i, and Eq. (7) implies that there is also
one MNGB. Such a state has indeed been found using
effective field theory [20] as well as various model
approaches [18,21] and can be identified with the neutral
pion in the superfluid medium. As opposed to these ap-
proximate calculations, the result of Ref. [7] nevertheless
ensures that its mass is exactly equal to �I. This follows
from the commutation relation ½V3; V�� ¼ �V�.
In the limit ofmassless quarks, the full symmetry becomes

G ¼ SUð2ÞL � SUð2ÞR; isospin chemical potential breaks

this explicitly to ~G ¼ Uð1ÞL � Uð1ÞR. Pion condensate now
develops at any nonzero chemical potential, breaking ~G
spontaneously to U(1). Thus, there is one type A NGB in
the spectrum. Moreover, given the commutators ½V3; R�� ¼
�R� and ½V3; L�� ¼ �L�, we find that h0jV3j0i ¼
�2ih0j½R1; R2�j0i ¼ �2ih0j½L1; L2�j0i � 0, as a result of
which there are ð4� 0Þ=2 ¼ 2MNGBs according toEq. (7).
This is consistent with explicit calculations; the additional
MNGB has the quantum numbers of the � meson.
The presence of MNGBs has also been noted in the

diquark BEC phase of two-color QCD. In case of two
quark flavors, these are the three pions, with the mass equal
to the baryon chemical potential, as observed in analytic
calculations [22,23] as well as on the lattice [24]. An
additional MNGB again appears in the limit of massless
quarks. Similar conclusions can be reached for an arbitrary
even number of flavors [22].
Effective Lagrangian formalism.—The effects of the

chemical potential can be captured by a low-energy effective
field theory (EFT). Assume first that at � ¼ 0, the symme-
try group G is broken spontaneously to its subgroup H.
Insofar as� is much smaller than the scale of this breaking,
it can be treated as a perturbation. One constructs an EFT
based on the coset spaceG=H [13,25] and introduces� as a
constant temporal gauge field [26]; no additional free pa-
rameters are involved. Assuming spatial translational and
rotational invariance, the lowest-order terms in the effective
Lagrangian read [13]

Leff ¼ cað�Þ _�a þ eið�Þ�i þ 1

2
�gabð�ÞDt�

aDt�
b

� 1

2
gabð�Þr�a � r�b: (9)
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Here, �a (a ¼ 1; . . . ; dimG=H) are NG fields, whereas
gabð�Þ and �gabð�Þ are both G-invariant metrics on the
coset. Under an infinitesimal symmetry transformation
defined by a set of parameters �i (i ¼ 1; . . . ; dimG), the
coset fields change as 	�a ¼ �ihai ð�Þ, where hai ð�Þ are the
Killing vectors of the metrics. The covariant derivative is
Dt�

a � _�a ��ihai ð�Þ.
Explicit expressions can be obtained using the

formalism of Ref. [27]. Denoting now the broken group
generators as Ta and the unbroken generators as T�, we

represent the coset element by Uð�Þ � eiTa�
a
and define

the Maurer-Cartan form as !að�Þ ¼ Ti!
i
að�Þ �

�iUð�Þ�1ð@=@�aÞUð�Þ. Then [28],

gabð�Þ¼gcdð0Þ!c
að�Þ!d

bð�Þ; eið�Þ¼
j
i ð�Þejð0Þ;

hai ð�Þ!b
að�Þ¼
b

i ð�Þ; cað�Þ¼�!i
að�Þeið0Þ; (10)

where 
j
i ð�Þ is defined by Tj


j
i ð�Þ � Uð�Þ�1TiUð�Þ. For

consistency with the G invariance of the action, the effec-

tive couplings eið0Þ and gabð0Þ must satisfy fji�ejð0Þ ¼ 0

and fc�agcbð0Þ þ fc�bgacð0Þ ¼ 0, where fkij are the structure

constants ofG. Similar expressions hold for �g. With the use
of Eq. (10), the effective Lagrangian is now completely
fixed by the values of gabð0Þ and �gabð0Þ, encoding decay
constants of the NGBs and of eið0Þ, expressing charge
densities in the ground state.

With the effective Lagrangian at hand, one first has to
determine the ground state triggered by the chemical
potential; the coset parametrization can always be chosen
so that this lies at � ¼ 0. Upon expansion in powers of the
coset fields, the effective Lagrangian can be used to calcu-
late any observable order by order in the derivative
expansion.

Let us first consider systems with ca � 0. For a consis-
tent derivative expansion, energy has to be counted as
momentum squared; hence, the term with two time deriva-
tives is subleading. The leading-order potential is thus
merely Vð�Þ ¼ �eið�Þ�i. The chemical potential forces
the ground state to rearrange so that eið0Þ is maximally
aligned with �i, as in the ferromagnet. Using the expres-

sions !i
a ¼ 	i

a � ð1=2Þfiab�b þ � � � and 
j
i ¼ 	j

i �
fjia�

a þ ð1=2Þfkiafjkb�a�b þ � � � , we obtain the precise

condition that � ¼ 0 is a (local) minimum of the potential
fiab�

beið0Þ ¼ 0 and the expansion of the Lagrangian to

second order in the fields Leff ¼ ð1=2Þfiabeið0Þð _�a�b �
�jfbjc�

a�cÞ plus terms with spatial derivatives. This is

sufficient to assert the existence of a MNGB with mass
given by Eq. (4).

In the ca ¼ 0 case, the vacuum and mass spectrum are
determined by the term ð1=2Þ �gabð�ÞDt�

aDt�
b; energy

now counts as the first power of momentum. The potential
takes the form Vð�Þ ¼ �ð1=2Þ �gabð0Þvað�Þvbð�Þ where

vjð�Þ � �i
j
i ð�Þ. The ground state thus rearranges so

that the chemical potential lies maximally in the subspace

of broken generators, as in the antiferromagnet.
Particularly simple expressions can be obtained when
the coset G=H is a symmetric space. Assuming that
the chemical potential lies completely in the broken
subspace [it is sufficient that �gabð0Þfbc��� ¼ 0], the bilin-

ear part of the effective Lagrangian becomes Leff ¼
ð1=2Þ �gabð0Þð _�a _�b ��a�cf

�
cdf

b
e��

d�eÞ plus spatial de-

rivative terms. This again leads to MNGBs in accord
with the general argument.
Apart from the true NGBs and MNGBs, the EFT can

predict pseudo-NGBs whose masses are not given by
Eq. (4) [29]. For such modes, limp!0h0jj0��ð0Þjn;pi ¼ 0

at fixed nonzero�, thus not contributing to �� [Eq. (3)]. In
the limit � ! 0, their masses vanish and they become true
NGBs. Their number can be inferred from known counting
rules, namely, as the number of NGBs at � ¼ 0 minus the
numbers of NGBs and MNGBs at nonzero �, given by
Eqs. (5) and (7).
When the chemical potential is large, perturbing G=H

is not adequate. One can then describe both NGBs and
MNGBs by an EFT based on theG= ~H coset space, ~H being
the unbroken subgroup of the ground state in the presence
of �. In this approach, effective couplings may implicitly

depend on �. In terms of generators, G= ~G is Kähler and
symplectic, and hence all generators in g=~g can be paired

in �, giving MNGBs. The rest of generators in ~g=~h repre-
sent true NGBs of either type. In general, there may be
other light modes, not automatically captured by the EFT,
whose masses are close to MNGBs [31]. Such modes have
to be added to the EFT as matter fields [27].
In any case, the EFT reproduces the predicted masses

of MNGBs. Symmetry guarantees that the masses do not
acquire any higher-order corrections. Of course, the utility
of the EFT is not limited to the mass spectrum. The non-
linear structure of the Lagrangian (9), dictated by symmetry,
allows one to make predictions for any other low-energy
observable.
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[15] T. Schäfer, D. T. Son, M.A. Stephanov, D. Toublan, and

J. J.M. Verbaarschot, Phys. Lett. B 522, 67 (2001); V. A.
Miransky and I. A. Shovkovy, Phys. Rev. Lett. 88, 111601
(2002).

[16] T. Brauner, Phys. Rev. D 74, 085010 (2006).
[17] T. Brauner, Phys. Rev. D 72, 076002 (2005).
[18] J. O. Andersen, Phys. Rev. D 75, 065011 (2007).
[19] D. T. Son and M.A. Stephanov, Phys. Rev. Lett. 86, 592

(2001).
[20] J. B. Kogut and D. Toublan, Phys. Rev. D 64, 034007

(2001).
[21] L.-y. He, M. Jin, and P.-f. Zhuang, Phys. Rev. D 71,

116001 (2005).
[22] J. B. Kogut, M.A. Stephanov, D. Toublan, J. J.M.

Verbaarschot, and A. Zhitnitsky, Nucl. Phys. B582, 477
(2000).

[23] C. Ratti and W. Weise, Phys. Rev. D 70, 054013 (2004); N.
Strodthoff, B.-J. Schaefer, and L. von Smekal, Phys. Rev.
D 85, 074007 (2012).

[24] S. Hands, I. Montvay, S. Morrison, M. Oevers, L. Scorzato,
and J.-I. Skullerud, Eur. Phys. J. C 17, 285 (2000).

[25] H. Leutwyler, Ann. Phys. (N.Y.) 235, 165 (1994).
[26] J. I. Kapusta, Phys. Rev. D 24, 426 (1981); H. E. Haber and

H.A. Weldon, Phys. Rev. D 25, 502 (1982).
[27] S. R. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177,

2239 (1969); C. G. Callan, S. R. Coleman, J. Wess, and
B. Zumino, Phys. Rev. 177, 2247 (1969).

[28] H. Watanabe and H. Murayama (to be published).
[29] A simple example is provided by G=H ¼ Oð3Þ=fg with

zero charge densities in the ground state. Three NGBs

result, two of which acquire a mass upon switching on a
chemical potential for one of the O(3) generators. Yet only

one of them is a MNGB, in accord with our counting rule
(7). The existence of such pseudo-NGBs was also noticed

very recently in Ref. [30].
[30] A. Nicolis, R. Penco, F. Piazza, and R.A. Rosen,

arXiv:1306.1240.
[31] For example, when the spontaneous symmetry breaking is

triggered by the chemical potential itself, the associated

Higgs mode has a gap comparable to �.

PRL 111, 021601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JULY 2013

021601-5

http://dx.doi.org/10.1103/PhysRevD.84.125013
http://dx.doi.org/10.1103/PhysRevD.84.125013
http://dx.doi.org/10.1103/PhysRevLett.108.251602
http://dx.doi.org/10.1103/PhysRevLett.108.251602
http://dx.doi.org/10.1103/PhysRevLett.110.091601
http://dx.doi.org/10.1103/PhysRevLett.110.091601
http://dx.doi.org/10.1103/PhysRevLett.110.181601
http://dx.doi.org/10.1103/PhysRevLett.110.181601
http://dx.doi.org/10.1103/PhysRev.123.1242
http://dx.doi.org/10.1103/PhysRevLett.35.760
http://dx.doi.org/10.1103/PhysRevLett.35.760
http://dx.doi.org/10.1103/PhysRevLett.29.1698
http://dx.doi.org/10.1103/PhysRevLett.110.011602
http://dx.doi.org/10.1103/PhysRevLett.110.011602
http://dx.doi.org/10.1007/JHEP06(2012)025
http://dx.doi.org/10.1016/0550-3213(76)90025-0
http://dx.doi.org/10.1016/0550-3213(76)90025-0
http://dx.doi.org/10.3390/sym2020609
http://dx.doi.org/10.1103/PhysRevD.49.3033
http://dx.doi.org/10.1103/PhysRevB.65.134410
http://dx.doi.org/10.1103/PhysRevB.65.134410
http://dx.doi.org/10.1016/S0370-2693(01)01265-5
http://dx.doi.org/10.1103/PhysRevLett.88.111601
http://dx.doi.org/10.1103/PhysRevLett.88.111601
http://dx.doi.org/10.1103/PhysRevD.74.085010
http://dx.doi.org/10.1103/PhysRevD.72.076002
http://dx.doi.org/10.1103/PhysRevD.75.065011
http://dx.doi.org/10.1103/PhysRevLett.86.592
http://dx.doi.org/10.1103/PhysRevLett.86.592
http://dx.doi.org/10.1103/PhysRevD.64.034007
http://dx.doi.org/10.1103/PhysRevD.64.034007
http://dx.doi.org/10.1103/PhysRevD.71.116001
http://dx.doi.org/10.1103/PhysRevD.71.116001
http://dx.doi.org/10.1016/S0550-3213(00)00242-X
http://dx.doi.org/10.1016/S0550-3213(00)00242-X
http://dx.doi.org/10.1103/PhysRevD.70.054013
http://dx.doi.org/10.1103/PhysRevD.85.074007
http://dx.doi.org/10.1103/PhysRevD.85.074007
http://dx.doi.org/10.1007/s100520000477
http://dx.doi.org/10.1006/aphy.1994.1094
http://dx.doi.org/10.1103/PhysRevD.24.426
http://dx.doi.org/10.1103/PhysRevD.25.502
http://dx.doi.org/10.1103/PhysRev.177.2239
http://dx.doi.org/10.1103/PhysRev.177.2239
http://dx.doi.org/10.1103/PhysRev.177.2247
http://arXiv.org/abs/1306.1240

