
Quantum Frameness for CPT Symmetry

Michael Skotiniotis,1,2,* Borzu Toloui,1,3 Ian T. Durham,4,† and Barry C. Sanders1

1Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
2Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

3Department of Physics, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, USA
4Department of Physics, Saint Anselm College, Manchester, New Hampshire 03102, USA

(Received 31 December 2012; revised manuscript received 2 June 2013; published 11 July 2013)

We develop a theory of charge-parity-time (CPT) frameness resources to circumvent CPT super-

selection. We construct and quantify such resources for spin-0, 1=2, 1, and Majorana particles and show

that quantum information processing is possible even with CPT superselection. Our method employs a

unitary representation of CPT inversion by considering the aggregate action of CPT rather than the

composition of separate C, P, and T operations, as some of these operations involve problematic

antiunitary representations.
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Superselection rules such as charge [1,2], orientation
[3], chirality [1,4,5], and phase [2,6,7] prohibit certain
coherent quantum superpositions and are formally equiva-
lent to the lack of a requisite classical frame of reference
[8]. Superselection rules can be circumvented by consum-
ing appropriate frameness resources, namely, quantum
systems whose states are asymmetric with respect to a
group G of transformations associated with the requisite
frame of reference [9]. Here, we develop the superselection
rule for charge-parity-time (CPT) invariance [10–12] and
construct the corresponding frameness resources for spins
s ¼ 0, s ¼ 1=2, and s ¼ 1 as well as for Majorana parti-
cles. We also suggest a procedure whereby such resources
can be constructed for higher-order spins.

Constructing the CPT operator in the seemingly natural
way by composing the separate C, P, and T operations
involves undesirable antiunitary projective representations.
If CPT were an antiunitary projective representation, two
phase terms �1 arise and cannot be simply eliminated,
thereby resulting in a doubling of the representation [13].
Perfunctory use of the antiunitary projective representation
unacceptably allows frameness resources to be converted
to nonresources under symmetry-respecting evolution,
viz., the Hamiltonian commutes with every element of
the representation of the group [14].

Therefore, we construct CPT as an indecomposable
unitary projective representation such that CPT2 ¼ 1,
with 1 the identity transformation, and the global phase
can be removed by defining the operator appropriately.
We apply this approach to the distinct cases of integer
and half-odd integer s and construct the relevant
projective unitary representation for CPT as well as the
resource states required to lift CPT superselection. In
addition, our strategy allows for the identification
of CPT-invariant subspaces capable of storing and trans-
mitting information even in the presence of CPT
superselection.

In the Feynman-Stueckelberg interpretation [15], the
image of a particle with mass m, spin s, linear three-

momentum p, and energy E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijpj2c2 þ ðmc2Þ2p
under

the action of CPT is an antiparticle of the same mass and
energy with its spin and three-momentum reversed, and its
internal degrees of freedom, such as electric charge, baryon
number, and lepton number, inverted. Employing only the
universally conserved internal symmetries, we define the
total internal quantum number

u :¼ Qþ ðB� LÞ (1)

for Q the total electric charge and B� L the difference
between total baryon number B and total lepton number L.
(In some theories, B and L are not individually conserved,
but B� L is; this is known as the chiral anomaly [16].)
As m and E are CPT invariant, we denote the state

corresponding to a particle with total internal quantum
number u, spin s, and linear three-momentum p as
ju; s;pi. The state of the corresponding antiparticle with
the same mass and energy is

CPTju; s;pi ¼ ei�CPT j � u;�s;�pi; (2)

for �CPT 2 ½0; 2�Þ an unimportant global phase. The state
ju; s;pi is technically not normalizable for an infinite
region with continuous p but is well defined as a distribu-
tion in the dual �� to the nuclear space of test functions
� � H , with H a Hilbert space and (�, H , ��) the
Gel’fand triple [17], also known as a rigged Hilbert space.
Observables are complex functionals of test functions and
distributions like ju; s;�pi. In our notation, Dirac ‘‘bras’’
refer to test functions and Dirac ‘‘kets’’ refer to distribu-
tions. Here, we employ the Dirac adjoint representation to
ensure covariance and unitarity throughout [18].
For reference-frame-establishment protocols, we con-

sider two parties Alice and Bob who can occupy different
space-time regions and, moreover, can be moving relative
to each other. Thus, Alice’s state ju; s;pi is equivalent to
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Bob’s state only up to a Poincaré transformation � that is
known by Alice and Bob plus either a CPT transformation
or else a 1 transformation.

Whether Alice and Bob are related by CPT or by 1 is
unknown to Alice and Bob, hence the reference-frame
problem. As Alice and Bob know the transformation �,
Bob can compensate for its effect on quantum information
sent to him from Alice by employing a suitable device that
simulates ��1 after receiving the particle. Specifically,
Bob would apply known rotations and boosts as necessary
to recover Alice’s basis modulo whether CPT or 1 should
also be applied.

For proper operation of Bob’s � compensator, we must
consider that although rotation generators commute with
CPT, boost generators do not. Therefore, the order in
which Bob compensates for � and CPT matters. We
assume that Bob compensates for the effects of � first.
Thus, upon receiving Alice’s particle, which is prepared in
some (test-function) state

jc i ¼ X
u;s

Z
dpc ðu; s;pÞju; s;pi (3)

and hence arrives at Bob’s location in the state�jc i, Bob’s
device effects ��1 in his frame and recovers the original
state up to a CPT transformation. Henceforth, we focus
only on the superselection rule pertaining to f1; CPTg.

To construct unitary projective representations of
f1; CPTg, we first complete the intermediate step of con-
structing the set of operators f1; C; PT; CPTg, which,
under composition, forms the (Abelian) Klein four-group
Z2 � Z2. Then, we reduce this group to the subgroup
f1; CPTg, which is equivalent to Z2. The representations
are constructed with respect to the states ju; s;pi that span
the space of distributions ��. The resultant orthonormal
basis for given labels u, s, and p is

fju; s;pi; ei�PT ju;�s;�pi ¼: PTju; s;pi;
ei�C j � u; s;pi ¼: Cju; s;pi;

ei�CPT j � u;�s;�pi ¼: CPTju; s;pig;
(4)

with �CPT ¼ �PT þ �C and the ‘‘:¼’’ and ‘‘¼:’’ notation
indicating that the side with the colon is defined by the
other side.

By restricting to positive u and positive s and ‘‘forward’’
p (i.e., p restricted to a half space of R3 with respect to
some defined forward direction vector), the corresponding
bases (4) are mutually orthogonal with the proviso that the
continuous nature of p means that this orthogonality is
of the Dirac � form rather than of the Kronecker � form.
The special case p ¼ 0 case is of zero measure in the set of
all such subbases and hence does not require special
treatment.

We now apply our strategy to special cases of particles,
namely, relativistic particles with s¼0, s¼1=2, and s¼1.
These cases cover almost all particles of interest in physics.

Subsequent to these cases, we explain how to extend the
results to s > 1 by using Bargmann-Wigner equations [19].
Consider a single, massive spin-0 particle with total

internal quantum number u satisfying the Klein-Gordon
equation �

h�m2c2

@
2

�
c ¼ 0; (5)

with h the D’Alembertian differential operator [18].
The Klein-Gordon solutions are plane waves of three-
momentum p with both positive or negative energies. We
interpret an eigenstate with a negative energy as an anti-
particle state with positive energy.
The orthonormal subbasis for the massive spin-0

particle is

fju;0;pi;ei�PT ju;0;�pi;ei�C j�u;0;pi;ei�CPT j�u;0;�pig:
(6)

Restricting to the subgroup f1; CPTg, the representation
of the CPT operator in this basis is

CPT ¼ ei�CPT

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0
BBBBB@

1
CCCCCA: (7)

The resultant CPT operator over this subbasis is thus
unitary and antidiagonal. For the massless spin-0 particle,
the Klein-Gordon equation is simply hc ¼ 0 and the
space is still spanned by j � u; 0;�pi, so CPT is the
same unitary operator as for the massive-particle case.
Neglecting the unobservable global phase �CPT , the eigen-
states of CPT (7) are

j�; 0;pi � 1ffiffiffi
2

p ðju; 0;pi � j � u; 0;�piÞ;

j�; 1;pi � 1ffiffiffi
2

p ðju; 0;�pi � j � u; 0;piÞ
(8)

with corresponding eigenvalues �1.
We now consider the representation of CPT for a mas-

sive Dirac spinor whose state c satisfies the Dirac equation

ði@��@� þmcÞc ¼ 0: (9)

The Dirac matrices are

�0 ¼ 1 0

0 �1

 !
; �j ¼ 0 �j

��j 0

 !
; (10)

and �jjj2ð1;2;3Þ are the Pauli matrices. Analogous to the

previous case of massive s ¼ 0 particles, we construct
the eight-dimensional state space spanned by fj � u;
�1=2;�pig. As the action of CPT inverts all degrees of
freedom (2), the corresponding unitary CPT matrix is
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CPT ¼
0 0 �1

0 �1 0

�1 0 0

0
BB@

1
CCA (11)

with eigenstates

j�; 0;pi � 1ffiffiffi
2

p ðju; 1=2;pi � j � u;�1=2;�piÞ;

j�; 1;pi � 1ffiffiffi
2

p ðju;�1=2;pi � j � u; 1=2;�piÞ;

j�; 2;pi � 1ffiffiffi
2

p ðju; 1=2;�pi � j � u;�1=2;piÞ;

j�; 3;pi � 1ffiffiffi
2

p ðju;�1=2;�pi � j � u; 1=2;piÞ:

(12)

The eigenvalue for each state fj�; {;pij{2ð0;...;3Þg is �1.
Dirac spinor states that are invariant under the action of

CPT are defined as Majorana spinors [18,20]. Majorana
spinors are also invariant under CPT when obtained as
solutions to the Majorana equation

i@��@�c c þmcc ¼ 0; (13)

where, in the Majorana basis, c c :¼ ic �. Hence, f1; CPTg
is a projective unitary representation of Z2 for both Dirac
and Majorana spinor states.

Massless s ¼ 1=2 particles are described by the Weyl
equation

i@��@�c ¼ 0; (14)

where the �� are the usual Pauli matrices for � ¼ j 2
f1; 2; 3g and �0 :¼ 1. The solutions to the Weyl equation
(14), known as Weyl spinors, can be represented as four-
component spinors. For m � 0, Eq. (14) is identical to the
Dirac equation [18], in which case the solutions are iden-
tical to those of the Dirac equation with states of �u
representing right-handed and left-handed spinors, respec-
tively. Therefore, the CPT operator is the same for both
massive and massless s ¼ 1=2 particles.

For massive spin-1 particles, we use the Weinberg-Shay-
Good equation [18]

½i@@�ð��� � g��Þi@@� þ 2m2
0c

2�c ¼ 0 (15)

with ��� the 6� 6 matrices

�ij¼ji ¼ 0 �ij1þMðijÞ þMðjiÞ

�ij1þMðijÞ þMðjiÞ 0

0
@

1
A;

�0i ¼ �i0 ¼ 0 Si

�Si 0

 !
; �00 ¼� 0 1

1 0

 !
; (16)

and

S1 ¼ i

0 0 0

0 0 �1

0 1 0

0
BB@

1
CCA; S2 ¼ i

0 0 1

0 0 0

�1 0 0

0
BB@

1
CCA;

S3 ¼ i

0 �1 0

1 0 0

0 0 0

0
BB@

1
CCA; MðijÞ ¼ iSjiSi: (17)

We construct a twelve-dimensional state space spanned by
the orthonormal basis fj � u;�s;�pi; s 2 ð�1; 0; 1Þg.
The CPT operator is then given by a 12� 12 antidiagonal
matrix with unit entries, and the eigenvectors are

j�; 0;pi ¼ 1ffiffiffi
2

p ðju; 1;pi � j � u;�1;�piÞ;

j�; 1;pi ¼ 1ffiffiffi
2

p ðju; 0;pi � j � u; 0;�piÞ;

j�; 2;pi ¼ 1ffiffiffi
2

p ðju;�1;pi � j � u; 1;�piÞ;

j�; 3;pi ¼ 1ffiffiffi
2

p ðju; 1;�pi � j � u;�1;piÞ;

j�; 4;pi ¼ 1ffiffiffi
2

p ðju; 0;�pi � j � u; 0;piÞ;

j�; 5;pi ¼ 1ffiffiffi
2

p ðju;�1;�pi � j � u; 1;piÞ;

(18)

with eigenvalues �1. Hence, f1; CPTg forms a projective
unitary representation of Z2 for massive spin-1 particles.
Now, we consider massless s ¼ 1 particles. Photons are

the only known particles of this type. The corresponding
expression for wave function dynamics is the Białynicki-
Birula–Sipe equation [21–27]

i@ð@0 þ c�3Sj@jÞc ¼ 0; �3 ¼ 1 0
0 �1

� �
(19)

with fSjg given by Eq. (17). The solutions are six-

component spinors with Weyl represention c ¼ ð�þ
��

Þ
where �� represent opposite helicities [26].
For the solutions of Eq. (19) to describe a photon

correctly, we require the auxiliary condition [21]

c ¼ �1c �; �1 ¼ 0 1
1 0

� �
: (20)

The state space of solutions of Eq. (19) is the same as for
Eq. (14). Consequently, the CPT operator has the same
form as that for the massive s ¼ 1 particles and thus the
same eigenvectors. Physically, these eigenvectors corre-
spond to linear superpositions of states with opposite hel-
icities. Such states are usually assumed not to mix and are
often treated separately [21,26]. We also note that the
photon does not possess a state of zero total spin (corre-
sponding to a lack of longitudinal polarization in classical
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optics), and thus the states j�; 1;pi and j�; 4;pi in
Eq. (18) are unphysical.

For particles of arbitrarily higher spin, solutions may be
constructed using the Bargmann-Wigner equations [19],
which are individually indexed Dirac equations. For
instance, s ¼ 3=2 particles obey a version of the
Bargmann-Wigner equations known as the Rarita-
Schwinger equation [28] whose solutions are sixteen-
component spinors or equivalently four four-component
spinors, each of which is individually a solution of the
Dirac equation.

We are now ready to formulate a CPT superselection
rule. Because of Schur’s lemmas [29], unitary representa-
tions of finite groups can be fully reduced into their irre-
ducible components (irreps). In particular, Z2 has two
one-dimensional irreps given by�. AsCPT superselection
implies that coherent superpositions between eigenstates
of the CPT operator cannot be observed [9], the state space
H of any system subject to CPT superselection may
conveniently be written as

H ffi M
	2f�g

H ð	Þ; (21)

with irrep label 	 denoting the two inequivalent irreps of

Z2 and H ð	Þ the corresponding eigenspaces.
The Hilbert space H in expression (21) is applicable

only for subbases corresponding to a fixed label p. In other

words, expression (21) is replaced by ��
p ffi L

	2f�g�
ð	Þ
p

with�� replacingH because including pmeans the states
are now distributions, i.e., fju; s;pig. The full space of
states corresponds to the space of distributions ��, which
is a (continuous) sum of all ��

p. Partitioning by irrep label

	 2 f�g holds in the full �� as well, thereby yielding the

space of distributions being partitioned into ��ðþÞ and

��ð�Þ. These � eigenspaces are spanned by the CPT
eigenvectors with positive and negative eigenvalues,
respectively.

The states that can be prepared in the absence of a CPT
frame of reference (CPT-invariant states) are test functions

that belong in either �ðþÞ or �ð�Þ, which are dual to the

spaces ��ðþÞ or ��ð�Þ. Hence, a linear superposition of
eigenstates of CPT is a resource and can be brought, via
CPT-invariant operations, to the standard form

jc i ¼ ffiffiffiffiffi
q0

p jþiþ ffiffiffiffiffi
q1

p j�i; q0 2 ½0;1�; q1 ¼ 1�q0;

(22)

with j�i arbitrary states from��ð�Þ. The important point is
that state (22) is a superposition of two states chosen from
two Z2 irrep labels �. For simplicity, we can consider the
state as being in a fixed momentum state, i.e., a plane wave.
As a perfect plane wave is unphysical, a more realistic
treatment would have the state prepared in a wave packet
with support over a continuum of momentum values p.

The frameness inherent in Alice’s CPT reference-frame
token jc i is quantified by the alignment rate Rðc Þ. This
alignment rate quantifies the amount of information Bob
obtains on average from each reference-frame token jc i in
the limit of asymptotically many copies [30]. For the
unitary representations of Z2 [30],

Rðc Þ ¼ �2 logjq0 � q1j: (23)

If q0 ¼ q1 ¼ 1=2 in (22), the alignment rate is effectively
infinite.
Our strategy for constructing a projective unitary repre-

sentation of the CPT operator allows for Alice and Bob to
communicate information even in the presence of CPT
superselection. Consider the case that Alice and Bob pos-
sess spinless particles. Alice prepares the plane-wave state

j
i ¼ �jþ; 0;pi þ �jþ; 1;pi: (24)

As the state (24) is an eigenstate of theCPT operator for all
�, � 2 C, Bob’s state is represented exactly the same as
Alice’s after correcting for the known Poincaré transfor-
mation � between their reference frames. By choosing the
coefficients � and � appropriately, Alice can encode a
logical qubit, which Bob can retrieve by performing the
appropriate decoding.
Here, we have shown that the superselection rule arising

from CPT symmetry can be circumvented using CPT
frameness resources. We have identified the ultimate
frameness resources for the cases of both massive and
massless spin-0, 1=2, and 1 particles including Majorana
spinors and have suggested a strategy for finding solutions
for states of arbitrary spin. We have also shown that
communication is possible, even in the presence of CPT
superselection, except for the case of spinless particles
with three-momentum equal to zero.
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