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Blind quantum computation is a new secure quantum computing protocol where a client, who does not

have enough quantum technologies at her disposal, can delegate her quantum computation to a server,

who has a fully fledged quantum computer, in such a way that the server cannot learn anything about the

client’s input, output, and program. If the client interacts with only a single server, the client has to have

some minimum quantum power, such as the ability of emitting randomly rotated single-qubit states or

the ability of measuring states. If the client interacts with two servers who share Bell pairs but cannot

communicate with each other, the client can be completely classical. For such a double-server scheme,

two servers have to share clean Bell pairs, and therefore the entanglement distillation is necessary in a

realistic noisy environment. In this Letter, we show that it is possible to perform entanglement distillation

in the double-server scheme without degrading the security of blind quantum computing.

DOI: 10.1103/PhysRevLett.111.020502 PACS numbers: 03.67.�a

A first generation quantum computer will be imple-
mented in a ‘‘cloud’’ style, since only a limited number of
groups, such as huge industries and governments, will be
able to possess it. When a client uses such a quantum server
via remote access, it is crucial to protect the client’s privacy.
Blind quantum computation [1–12] is a new secure quan-
tum computing protocol which can guarantee the security
of a client’s privacy in such cloud quantum computing.
Protocols of blind quantum computation enable a client
(Alice), who does not have enough quantum technologies
at her disposal, to delegate her quantum computation to a
server (Bob), who has a fully fledged quantum computer,
in such a way that Alice’s input, output, and program are
hidden from Bob [1–12].

The original protocol of blind quantum computation was
proposed by Broadbent, Fitzsimons, and Kashefi (BFK)
[1]. Their protocol uses measurement-based quantum com-
putation on the cluster state (graph state) by Raussendorf
and Briegel [13]. A proof-of-principle experiment of the
BFK protocol has also been achieved recently with a
quantum optical system [3]. The BFK protocol has recently
been generalized to other blind quantum computing pro-
tocols which use measurement-based quantum computa-
tion on the Affleck-Kennedy-Lieb-Tasaki state [5,14,15],
continuous-variable measurement-based quantum compu-
tation [7,16], and the ancilla-driven model [10,17].

Since the original BFK protocol was proposed, new
protocols have been developed in order for blind quantum
computation to be more practical. One direction is
making blind protocols more fault tolerant. While the BFK
protocol, which utilizes the brickwork state, would be
fault tolerant, its threshold value is extremely small.

The recently proposed topological blind quantum compu-
tation [6] employs a special three-dimensional cluster
state [18] and allows us to perform topologically protected
blind quantum computation even with a high error proba-
bility of 0.43% (i.e., fidelity of 99.57%) in preparations,
measurements, and gate operations.
Another direction is making Alice as classical as

possible. In the above BFK-based protocols, Alice emits
randomly rotated single-qubit states, such as single-photon
states. Recently, it was shown [4] that instead of single-
photon states, coherent states are also sufficient. Since
coherent states are considered to be more classical than
single-photon states, this result suggests that Alice can be
more classical.
It is also possible to make Alice completely classical:

the double-sever blind protocol was introduced in Ref. [1],
where two Bobs share Bell pairs (but cannot perform
classical communication with each other) and perform
computational tasks ordered by Alice’s classical message.
The double-server blind protocol is also fault tolerant,
but Bell pairs of fidelity above 99% are required even if
topological blind quantum computation is employed. Since
Bell pairs have to be sent from the third party or Alice
herself via public quantum channels, such an ability to
generate high-fidelity Bell pairs or encoding them into
quantum error correction codes would be too demanding.
In this Letter, we settle this problem. We show that it

is possible to perform entanglement distillation in the
double-server scheme without degrading the security of
blind quantum computing. As a result, the required fidelity
of the Bell pairs is improved dramatically to 81%, which is
determined by the hashing bound and achieved by quantum
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random coding [19,20]. Since the Bell pair generation
of fidelity higher than 81% is nowadays easily achievable
by using, for example, parametric down-conversion, the
present result is crucial in blind quantum computation to
make Alice (or the third party) as classical as possible
by using practically noisy Bell pair sources and quantum
channels.

Before proceeding to our main result, let us briefly
review the BFK blind protocol [1]. Assume that Alice
wants to perform measurement-based quantum computa-
tion on the m-qubit graph state corresponding to the
graph G. The quantum algorithm which Alice wants to
run is specified with the measurement basis fj0i � ei�j j1ig
for the jth qubit (j¼1;2;...;m), where �j 2 fðk�Þ=
4jk ¼ 0; 1; . . . ; 7g. (Note that such X� Y plane measure-
ments are universal [13].) The BFK protocol runs as
follows (see also Fig. 1). (S1) Alice tells Bob the graph
G [21]. (S2) Alice sends Bob

N
m
j¼1 j�ji, where j�ji �

j0i þ ei�j j1i and �j is randomly chosen by Alice from

fðk�Þ=4jk ¼ 0; 1; . . . ; 7g. (S3) Bob makes jGf�jgi �
ðNði;jÞ2E CZi;jÞ

N
m
j¼1 j�ji, where E is the set of edges of

G and CZi;j is the CZ gate between the ith and jth qubits.

(S4) Alice and Bob now perform measurement-based
quantum computation on jGf�jgi with two-way classical

communications as follows: when Alice wants Bob to
measure the jth qubit (j¼1;2;...;m) of jGf�jgi, she sends
Bob �j � �j þ�0

j þ rj�, where rj 2 f0; 1g is a random

binary chosen by Alice and �0
j is the modified version of

�j according to the previous measurement results, which is

the standard feed forwarding of the one-way model [13].
Bob measures the jth qubit in the basis fj0i � ei�j j1ig and
tells the measurement result to Alice.

We call this protocol the single-server protocol, since
there is only a single server (Bob). It was shown [1] that
whatever Bob does, he cannot learn anything about Alice’s
input, output, or algorithm.

In the above single-server protocol, Alice has to have
the ability of emitting randomly rotated single-qubit states
fj�jigmj¼1. It was shown in Ref. [1] that if we have two

servers (Bob1 and Bob2) who share Bell pairs but cannot
communicate with each other, Alice can be completely
classical. (Alice only has to have a classical computer
and two classical channels; one is between Alice and
Bob1, and the other is between Alice and Bob2.) We call
such a scheme the double-server scheme, since there are
two servers. A protocol of the double-server scheme runs
as follows [1] (see also Fig. 2). (D1) A trusted center
distributes Bell pairs to Bob1 and Bob2 [22]. Now, Bob1
and Bob2 share m Bell pairs ðj00i þ j11iÞ�m. (D2) Alice
sends Bob1 classical messages f�jgmj¼1, where �j is

randomly chosen by Alice from fðk�Þ=4jk ¼ 0; 1; . . . ; 7g.
(D3) Bob1 measures his qubit of the jth Bell pair in the
basis fj0i � e�i�j j1ig (j ¼ 1; . . . ; m). Bob1 tells Alice the
measurement results fbjgmj¼1 2 f0; 1gm. (D4) After these

Bob1 measurements, Bob2 has
N

m
j¼1Z

bj
j j�ji¼

N
m
j¼1 j�jþ

bj�i. Now, Alice and Bob2 can start the single-server BFK
protocol with the modification f�jgmj¼1 ! f�j þ bj�gmj¼1.

In addition to the advantage of the completely classical
Alice, the double-server scheme is intensively studied in
computer science in the context of the multiprover inter-
active proof system, which assumes computationally
unbounded and untrusted prover (server), and in device-
independent quantum key distribution [1,23,24].
Note that the impossibility of the communication

between two Bobs is crucial in the double-server protocol.
If Bob1 can send some messages to Bob2, Bob1 can tell
Bob2 f�j þ bj�gmj¼1, and then Bob2 can learn something

about f�jgmj¼1, since Bob2 knows f�j þ bj� þ �0
j þ

rj�gmj¼1. On the other hand, if Bob2 can tell Bob1 f�j þ
bj�þ�0

j þ rj�gmj¼1, Bob1 can learn something about

f�jgmj¼1, since Bob1 knows f�j þ bj�gmj¼1. In these cases,

the security of Alice’s privacy is no longer guaranteed.
In order to perform the correct double-server protocol,

two Bobs must share clean Bell pairs. Sharing clean Bell
pairs is also crucial in many other quantum information
protocols such as quantum teleportation [25], quantum key
distribution [26,27], and distributed quantum computation

FIG. 1. The single-server blind protocol. (a) Alice sends many
single-qubit states to Bob. QD is a device which emits randomly
rotated single qubits. (b) Bob creates a resource state. Alice and
Bob perform measurement-based quantum computation through
the two-way classical channel. CC is a classical computer.

FIG. 2. The double-server blind protocol. (a) Bob1 and Bob2
share Bell pairs. Alice sends classical messages to Bob1. Bob1
performs measurements on his qubits of the Bell pairs and
tells the measurement results to Alice. (b) Alice and Bob2 run
the single-server blind protocol through the two-way classical
channel. CC is a classical computer.
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[28–32]. One standard way of sharing clean Bell pairs
in a noisy environment is entanglement distillation
[19,20,33,34]. In entanglement distillation protocols, two
people, say, Bob1 and Bob2, who want to share clean Bell
pairs, start with some dirty n Bell pairs. Then, they perform
local operations with some classical communications and
finally ‘‘distill’’ m (m< n) clean Bell pairs [19,20,33,34].

If we consider the application of entanglement distilla-
tion to the double-server blind protocol, one huge obstacle
is that two Bobs are not allowed to communicate with
each other in the double-server scheme. Hence, message
exchanges between two Bobs, which are necessary for
entanglement distillation, must be done through Alice’s
mediation; i.e., Bob1 (Bob2) sends a message to Alice,
and Alice transfers it to Bob2 (Bob1). It is not self-evident
that the security of the double-server blind protocol is
guaranteed even if we plug an entanglement distillation
protocol into the double-server blind protocol [35]. For
example, Bob1 might send a message to Alice pretending
that it is a ‘‘legal’’ message for entanglement distillation.
Alice might naively forward that message to Bob2 without
noticing Bob1’s evil intention and believing that it is a
harmless message. In this case, Bob1 can indirectly send
a message to Bob2, and hence the security of the double-
server protocol is no longer guaranteed.

If the entire entanglement distillation is completed
before starting the double-server protocol, and if Alice
only delegates her computation to the Bobs once, then
the communication between two Bobs during the entan-
glement distillation is harmless, since when they are doing
the entanglement distillation, messages related to Alice’s
computation are not yet sent to the Bobs. However, if Alice
delegates more than twice, then two Bobs might exchange
information about the previous double-server computation
during entanglement distillation for the next round of
computation as in the case of the ‘‘device-independence’’
argument of the quantum key distribution with devices that
have memory [36]. Furthermore, entanglement distillation
might be done in parallel with the double-server protocol
in order to avoid decoherence. In these cases, we must be
careful about the communication between two Bobs during
entanglement distillation. In terms of the composable
security, this means that we are interested in the com-
posable security of the ‘‘distillationþ blind computing’’
protocol [35].

Throughout this Letter, we denote four Bell states by
jc z;xi � ðI � XxZzÞðj0i � j0i þ j1i � j1iÞ, where ðz; xÞ 2
f0; 1g2 and X � j0ih1j þ j1ih0j.

Protocol.—Now, let us show that entanglement distilla-
tion by two Bobs is indeed possible without degrading the
security. As in the case of the original BFK double-server
protocol, a trusted center (or Alice) generates n Bell states
jc 00i�n and distributes them to two Bobs; one qubit of
each jc 00i is sent to Bob1 and the other to Bob2. Because
of the noise in the channel between the center and the

Bobs, each Bell state decoheres jc 00i ! �. Hence, two
Bobs share n impure pairs ��n, where � is a dirty Bell
state: one qubit of � is possessed by Bob1 and the other by
Bob2. Without loss of generality, we can assume that � is
the Werner state �¼Fc 11þð1�FÞ=3ðc 00þc 01þc 10Þ,
where c � jc ihc j. If it is not the Werner state, it can
be converted into the Werner state by using the twirling
operation (after applying I � XZ) [20]. In order to perform
the twirling operation, Alice only has to randomly choose
a SUð2Þ operator and tell its classical description to two
Bobs. Therefore, the twirling operation does not affect the
security.
Since � is Bell diagonal, ��n is the mixture of tensor

products of Bell states:

��n ¼ X

ðz1;x1;...;zn;xnÞ2f0;1g2n
pðz1; x1; . . . ; zn; xnÞ

On

j¼1

c zj;xj :

Alice randomly chooses a 2n-bit string s1 and sends it to
two Bobs. This s1 is chosen completely randomly, being
independent of other parameters (such as �j, �j, etc.).

Each Bob then performs a certain local unitary operation
which is determined by s1. Each Bob next measures a qubit
of a single pair in the computational basis and tells the
measurement result to Alice. [The detail of the unitary
operation, which is irrelevant here, is given in Ref. [20].
Which pair is measured is also determined by s1 [20].
In brief, these unitary operations and measurements are
performed for obtaining s1 � v (mod2) for the hashing,
where v � ðz1; x1; . . . ; zn; xnÞ.] From these measurement
results by the Bobs, Alice can gain a single bit s1 � v
(mod2) of information.
Since a single pair is measured out, now two Bobs share

n� 1 pairs. If Alice and two Bobs repeat a similar proce-
dure [i.e., Alice randomly chooses a 2ðn� 1Þ-bit string s2
and tells it to two Bobs, and then two Bobs perform local
operations, measure a single pair in the computational basis,
and tell the measurement results to Alice], Alice can gain
another single bit of information. In this way, they repeat
this procedure many times, and Alice obtains enough bits to
perform the hashing, which works as follows.
The probability distribution pðz1; x1; . . . ; zn; xnÞ has

almost all its weight for a set of �2nSð�Þ ‘‘likely’’ strings,
where Sð�Þ is the von Neumann entropy of �. The
probability that a 2n-bit string (z1; x1; . . . ; zn; xn) falls

outside of the set of the 2n½Sð�Þþ�� most probable strings

is Oðe��2nÞ [20]. Therefore, Alice can (almost) specify
pðz1; x1; . . . ; zn; xnÞ if she gains nSð�Þ bits of information
about pðz1; x1; . . . ; zn; xnÞ. This means that it is sufficient
for Alice and two Bobs to repeat the above procedure for
nSð�Þ times. Then, two Bobs spend nSð�Þ pairs for mea-
surements, and therefore at the end of the distillation, they
sharem � n� nSð�Þ pairsNm

j¼1 jc zj;xji, where ðzj; xjÞ 2
f0; 1g2. Alice knows the 2m-bit string (z1; x1; . . . ; zm; xm).
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After the distillation, Alice and two Bobs can start the
double-server protocol. Now, we modify the double-server
protocol as follows. (D10) Two Bobs share

N
m
j¼1 jc zj;xji.

(D20) Alice sends Bob1 classical messages f�0j �
ð�1Þxj�j þ zj�gmj¼1, where �j is randomly chosen by

Alice from fðk�Þ=4jk ¼ 0; 1; . . . ; 7g. (D30) Bob1 measures

his qubit of the jth Bell pair in the basis fj0i � e�i�0j j1ig
(j ¼ 1; . . . ; m). Bob1 tells Alice the measurement results
fbjgmj¼1 2 f0; 1gm. (D40) The same as D4. Since D40 is

the same as D4, it is obvious that Alice can run the
correct single-server blind quantum computation with
Bob2.

Bob1 cannot send any messages to Bob2.—Let us show
that Bob1 cannot send any messages to Bob2. What Bob2
receives from Alice are bit strings s1; . . . ; sn�m and f�j þ
bj�þ�0

j þ rj�gmj¼1. Since s1; . . . ; sn�m are completely

uncorrelated with what Bob1 sends to Alice, Bob2
cannot gain any information about Bob1’s message from
s1; . . . ; sn�m. Furthermore, rj is randomly taken by Alice

from f0; 1g, being independent of what Bob1 sends to Alice.
Therefore, Bob2 cannot gain any information about bj from

�j þ bj�þ�0
j þ rj�. Bob1 and Bob2 share entangled

pairs. However, due to the no-signaling principle, only
sharing entangled pairs is useless for message transmission.
Hence, Bob1 cannot send any messages to Bob2.

Bob2 cannot send any messages to Bob1.—Next, let
us show that Bob2 cannot send any messages to Bob1.
What Bob1 receives from Alice are bit strings s1; . . . ; sn�m

and f�0j � ð�1Þxj�j þ zj�gmj¼1. Again, s1; . . . ; sn�m are

useless for the message transmission from Bob2 to
Bob1. Furthermore, �j is randomly chosen by Alice from

fðk�Þ=4jk ¼ 0; 1; . . . ; 7g, being independent of what Bob2
sends to Alice and (z1; x1; . . . ; zm; xm). Therefore, Bob1
cannot gain any information about Bob2’s message from
�0j. Hence, Bob2 cannot send any message to Bob1.

The two Bobs cannot learn Alice’s computational
information.—Finally, let us show the security of
Alice’s computational information. First, from Bob2’s
viewpoint, the difference between our protocol (i.e., the
distillation plus the modified double-server protocol)
and the original BFK double-server protocol is only
that Bob2 receives bit strings s1; . . . ; sn�m from Alice.
Since these bit strings are completely uncorrelated
with Alice’s computational information, our protocol
is as secure as the original BFK double-server protocol
against Bob2.

Second, from Bob1’s viewpoint, the differences between
our protocol and the original BFK double-server protocol
are that (i) Bob1 receives bit strings s1; . . . ; sn�m from
Alice. (ii) Bob1 receives �0j � ð�1Þxj�j þ zj� instead of

�j from Alice (j ¼ 1; 2; . . . ; m). Again, we can safely

ignore (i). Regarding (ii): since �j is randomly taken

from fðk�Þ=4jk¼0;1;...;7g, being independent of Alice’s
computational information and (z1; x1; . . . ; zm; xm), Bob1

cannot gain any information about Alice’s computation
from �0j. Hence, our protocol is as secure as the original

double-server BFK protocol against Bob1.
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and W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[26] C. H. Bennett and G. Brassard, Proceedings of the IEEE
International Conference on Computers, Systems and
Signal Processing, Bangalore, India, 1984 (IEEE,
New York, 1984).

[27] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[28] K. Fujii, T. Yamamoto, M. Koashi, and N. Imoto,

arXiv:1202.6588.
[29] Y. Li and S. C. Benjamin, New J. Phys. 14, 093008

(2012).

[30] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello,
Phys. Rev. A 59, 4249 (1999).

[31] W. Dür and H. J. Briegel, Phys. Rev. Lett. 90, 067901
(2003).

[32] L. Jiang, J.M. Taylor, A. S. Sørensen, and M.D. Lukin,
Phys. Rev. A 76, 062323 (2007).

[33] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S.
Popescu, and A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996).

[34] W. Dür and H. J. Briegel, Rep. Prog. Phys. 70, 1381
(2007).

[35] Do not misunderstand that this suggests that existing blind
protocols without distillation are insecure: the stand-alone
and composable securities of blind protocols themselves
are already established [1,2,4–6,8,9,11,12].

[36] J. Barrett, R. Colbeck, and A. Kent, Phys. Rev. Lett. 110,
010503 (2013).

PRL 111, 020502 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JULY 2013

020502-5

http://arXiv.org/abs/1209.0448
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://arXiv.org/abs/1202.6588
http://dx.doi.org/10.1088/1367-2630/14/9/093008
http://dx.doi.org/10.1088/1367-2630/14/9/093008
http://dx.doi.org/10.1103/PhysRevA.59.4249
http://dx.doi.org/10.1103/PhysRevLett.90.067901
http://dx.doi.org/10.1103/PhysRevLett.90.067901
http://dx.doi.org/10.1103/PhysRevA.76.062323
http://dx.doi.org/10.1103/PhysRevLett.77.2818
http://dx.doi.org/10.1088/0034-4885/70/8/R03
http://dx.doi.org/10.1088/0034-4885/70/8/R03
http://dx.doi.org/10.1103/PhysRevLett.110.010503
http://dx.doi.org/10.1103/PhysRevLett.110.010503

