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Sequential measurements on a single particle play an important role in fundamental tests of quantum

mechanics. We provide a general method to analyze temporal quantum correlations, which allows us to

compute the maximal correlations for sequential measurements in quantum mechanics. As an application,

we present the full characterization of temporal correlations in the simplest Leggett-Garg scenario and in

the sequential measurement scenario associated with the most fundamental proof of the Kochen-Specker

theorem.

DOI: 10.1103/PhysRevLett.111.020403 PACS numbers: 03.65.Ud, 03.65.Ta

Introduction.—The physics of microscopic systems is
governed by the laws of quantum mechanics and exhibits
many features that are absent in the classical world. The
best-known result showing such a difference is due to Bell
[1]. The assumptions of realism and locality lead to bounds
on the correlations—the Bell inequalities, and these
bounds are violated in quantum mechanics. Interestingly,
this quantum violation is limited for many Bell inequali-
ties and does not reach the maximal possible value. For
instance, the Bell inequality derived by Clauser, Horne,
Shimony, and Holt (CHSH) bounds the correlation [2]

B¼hA1�B1iþhA1�B2iþhA2�B1i�hA2�B2i; (1)

where Ai and Bj are measurements on two different parti-

cles. On the one hand, local realistic models obey the
CHSH inequality B � 2, which is violated in quantum
mechanics. On the other hand, the maximal quantum value

is upper bounded by B � 2
ffiffiffi
2

p
, a result known as

Tsirelson’s bound [3]. Whereas this bound holds within
quantum mechanics, it has turned out that hypothetical
theories that reach the algebraic maximum B ¼ 4 without
allowing faster-than-light communication are possible [4].
This raises the question of whether the bounded
quantum value can be derived on physical grounds from
fundamental principles. Partial results are available, and
principles have been suggested that bound the correlations:
in a world where maximal correlations are observed, the
communication complexity is trivial [5], a principle estab-
lished as information causality is violated [6], and there
exists no reversible dynamics [7].

The question of how and why quantum correlations are
fundamentally limited has been discussed mainly in the
scenario of bipartite and multipartite measurements. What
happens, however, if we shift the attention from spatially
separated measurements to temporally ordered measure-
ments? There is no need to measure on distinct systems as
in Eq. (1), but rather, we may perform sequential measure-
ments on the same system. Then, an elementary property of
quantum mechanics becomes important: the measurement
changes the state of the system. In fact, this allows us to

temporally ‘‘transmit’’ a certain amount of information [8],
and one would expect that the correlations in the temporal
case can be larger than in the spatial situation.
We stress that sequential measurements also have been

considered in the analysis of the question how quantum and
classical mechanics are different, the most well-established
results here are quantum contextuality (the Kochen-Specker
theorem [9]) and macrorealism (Leggett-Garg inequalities
[10]); cf. Fig. 1. The research in this fields has triggered
experiments involving sequential measurements. For dem-
onstrating such a contradiction between classical and quan-
tum physics, e.g., the correlation

S5 ¼ hA1A2iseq þ hA2A3iseq þ hA3A4iseq
þ hA4A5iseq � hA5A1iseq (2)

has been considered [11,12]. Here, hAiAjiseq denotes a

sequential expectation value that is the average of the
product of the value of the observables Ai and Aj when first

Ai is measured, and afterwards Aj. One can show that for

macrorealistic theories as well as for noncontextual models
the bound S5 � 3 holds, but in quantum mechanics, this
can be violated.
Here, however, we are rather interested in the fundamental

bounds on the temporal quantum correlations, with no as-
sumption about the compatibility of the observables. Special
cases of this problem have been discussed before: for
Leggett-Garg inequalities, maximal values for two-level sys-
tems have been derived [11,13], and temporal inequalities
similar to the CHSH inequality have been discussed [8,14].
We provide a method that allows us to compute the

maximal achievable quantum value for an arbitrary
inequality, and thus we solve the problem of bounding
temporal quantum correlations. First, we will discuss a
simple method, which can be used for expressions as in
Eq. (2), where only sequences of two measurements are
considered. Then, we introduce a general method which
can be used for arbitrary sequential measurements, result-
ing in a complete characterization of the possible quantum
values. Interestingly, our methods characterize temporal
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correlations exactly, whereas for the case of spatially sepa-
rated measurements only converging approximations are
known.

Projective measurements.—When determining the maxi-
mal value for sequential measurements as in Eq. (2) we
consider projective measurements, as these are the standard
textbook examples of quantum measurements. The under-
lying formalism has been established by von Neumann [15]
and Lüders [16]. An observable A with possible results �1
is described by two projectors �þ and �� such that
A ¼ �þ ���. If the observable A is measured, the quan-
tum state is projected onto the space of the observed result,
i.e., % � ��%��=Trð%��Þ. Applying this scheme to the
case of sequential measurements, one finds that the sequen-
tial mean value can be written as

hAiAjiseq ¼ 1

2
½Trð%AiAjÞ þ Trð%AjAiÞ�: (3)

It is interesting to notice that for pairs of�1-valued observ-
ables, such a mean value does not depend on the order of the
measurement [8].

The simplified method.—We first show how the maximal
quantum mechanical value for an expression such as S5 in
Eq. (2) can be determined. First, we consider a set A ¼
fAig of �1-valued observables and a general expression
C ¼ P

ij�ijhAiAjiseq. The correlations given in Eq. (2) are

just a special case of this scenario. Then, we consider the
matrix built up by the sequential mean values Xij ¼
hAiAjiseq. This matrix has the following properties: (i) it

is real and symmetric, X ¼ XT , (ii) the diagonal elements
equal one, Xii ¼ 1, and (iii) the matrix has no negative
eigenvalue (or vTXv � 0 for any vector v), denoted as X �
0 (see Supplemental Material [17]). A similar construction
for the matrix X, together with the optimization problem
below, has been considered before in relation with Bell

inequalities [18]. However, our method involves a different
notion of correlations, namely, that given by Eq. (3).
The main idea is now to optimize the expression

C¼P
ij�ijXij over all matrices with the properties

(i)–(iii) above. Hence, we consider the optimization problem

maximize:
X
ij

�ijXij;

subjected to: X ¼ XT � 0 and for all i; Xii ¼ 1:

(4)

Since all matrices X that can originate from a sequences of
quantum measurements will be of this form, one performs
the optimization over a potentially larger set. Thus, the
solution of this optimization is, in principle, just an upper
bound on the maximal quantum value of S5. Note that the
optimization itself can be done efficiently and is assured to
reach the global optimum since it represents a so-called
semidefinite program [19]. In the case of S5, this optimiza-
tion can even be solved analytically and gives

S5 � 5

4
ð1þ ffiffiffi

5
p Þ � 4:04: (5)

It turns out that appropriately chosen measurements on a
qubit already reach this value (see Supplemental Material
[17] and Refs. [11,20]). Hence, this upper bound is tight.
More generally, one can prove that each matrix X with the
above properties has a sequential quantum representation
(see Supplemental Material [17]). Finally, note that if the
observables in each sequence are required to commute, then

the maximal quantum value for S5 is known to be �QM ¼
4

ffiffiffi
5

p � 5 � 3:94 [21,22].
The general method.—The above method can only be

used for correlations terms of sequences of at most two
�1-valued observables. In the following, we discuss the
conditions allowing a given probability distribution to

 

 

FIG. 1 (color online). Sequential measurements occur in two different scenarios. (a) In the Leggett-Garg scenario, one takes a single
observable M that measures whether the physical system is in one of two possible macroscopic states. Then, one considers the
correlations between these measurements at three different times, hMðt1ÞMðt2Þiseq, hMðt1ÞMðt3Þiseq, and hMðt2ÞMðt3Þiseq. The values
predicted by quantum mechanics contradict the assumption that the physical system is in any of these macroscopic states at any time
and that the measurement reveals this state without disturbing it. (b) In the Kochen-Specker scenario, one considers a set of observables
Ai. Some of these observables are compatible and can therefore be measured simultaneously or in a sequence without any disturbance.
Then one measures the correlations of simultaneous or sequential measurements of compatible observables, such as hAiiseq, hAiAjiseq,
and hAjAiAkiseq. For these correlations, one finds that quantum mechanics contradicts the assumption of noncontextuality. This

assumption states that the result of a measurement should not depend on which other compatible observables are measured along
with it. It should be noted, however, that the situation considered in this Letter is more general than case (a) or (b), since no assumption
about the time evolution or the compatibility of observables is made.
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be realized as sequences of measurements on a single
quantum system in the general setting. We label as r ¼
ðr1; r2; . . . ; rnÞ the results of an n-length sequence obtained
by using the setting s ¼ ðs1; s2; . . . ; snÞ. The ordering is
such that r1, s1 label the result and the setting for the first
measurement, etc. The outcomes of any such sequence
are sampled from the sequential conditional probability
distribution

PðrjsÞ 	 Pseqðr1; r2; . . . ; rnjs1; s2; . . . ; snÞ: (6)

In the case of projective quantum measurements, each
individual result r of any setting s is associated with a
projector �s

r, which altogether satisfy two requirements:
for each setting the operators must sum up to the identity,
i.e.,

P
r�

s
r ¼ 1 and they satisfy the orthogonality relations

�s
r�

s
r0 ¼ �rr0�

s
r, where �rr0 is the Kronecker symbol.

Finally, after the measurement with setting s and result r,
the quantum state is transformed according to the rule
% � �s

r%�
s
r=PðrjsÞ.

In the following, we say that the a conditional probabil-
ity distribution PðrjsÞ has a sequential projective quantum
representation if there exists a suitable set of such operators
�s

r and an appropriate initial state % such that

PðrjsÞ ¼ Tr½�ðrjsÞ�ðrjsÞy%�; (7)

with the shorthand �ðrjsÞ ¼ �s1
r1�

s2
r2 
 
 
�sn

rn .
Whether a given distribution PðrjsÞ indeed has such a

representation can be answered via a so-called matrix of
moments, which often appears in moment problems
[18,23–25]. This matrix, denoted as M in the following,
contains the expectation value of the products of the above-
used operators �ðrjsÞ at the respective position in the
matrix. In order to identify this position, we use as a label
the abstract operator sequence rjs for both row and column
index. In this way the matrix is defined as

Mrjs;r0js0 ¼ h�ðrjsÞ�ðr0js0Þyi: (8)

Whenever this matrix is indeed given by a sequential
projective quantum representation, the matrix M satisfies
two conditions: (a) linear relations of the form Mrjs;kjl ¼
Mr0js0;k0jl0 if the underlying operators are equal as a conse-

quence of the properties of normalization and orthogonality
of projectors; (b) M � 0 since vyMv � 0 holds for any
vector v, because such a product can be written as the
expectation value hCCyi% � 0 which is non-negative for

any operator C. Finally, note that certain entries of this
matrix are the given probability distribution, for instance,
at the diagonalMrjs;rjs ¼ PðrjsÞ. The main point, however,

is the converse statement: given a moment matrix with
properties (a) and (b) above, the associated probability
distribution PðrjsÞ always has a sequential projective quan-
tum representation (see Supplemental Material [17]).

Hence, the search for quantum bounds represents again a
semidefinite program. The fact that this characterization is

sufficient is in stark contrast with the analogue technique in
the spatial Bell-type scenario [23,24], where one needs to
use moment matrices of an increasing size n to generate
better superset characterizations, which only become
sufficient in the limit n ! 1. However, indirectly, the
sufficiency of our method has already been proven in this
context [24], and an analogous mathematical result,
valid for the special case of dichotomic observables, has
been presented in Ref. [26] in the context of polynomial
optimization problems (see Supplemental Material [17]).
Applications.—To demonstrate the effectiveness of our

approach, we discuss four examples. First, we consider the
original Leggett-Garg inequality

S ¼ hMðt1ÞMðt2Þiseq þ hMðt2ÞMðt3Þiseq
� hMðt1ÞMðt3Þiseq � 1: (9)

This bound holds for macrorealistic models, and it has been
shown that in quantum mechanics values up to S ¼ 3=2
can be observed [10,11,13]. Our methods not only allow us
to prove that this value is optimal for any dimension and
any measurement but also to, for instance, determine all
values in the three-dimensional space of temporal correla-
tions hMðtiÞMðtjÞi which can originate from quantum me-

chanics. The detailed description is given in Fig. 2, and the
calculations are given in the Supplemental Material [17].
Second, we consider generalizations of the Eq. (2) with a

larger number of measurements, known as N-cycle
inequality [21,22],

FIG. 2 (color online). Complete characterization of the
possible quantum values for the simplest Leggett-Garg scenario.
In this case, three different times are considered, resulting in
three possible correlations hMðt1ÞMðt2Þiseq, hMðt1ÞMðt3Þiseq, and
hMðt2ÞMðt3Þiseq. In this three-dimensional space, the possible

classical values form a tetrahedron, characterized by Eq. (9) and
variants thereof. The possible quantum mechanical values form a
strictly larger set with curved boundaries.
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SN ¼ XN�2

i¼0

hAiAiþ1iseq � hAN�1A0iseq: (10)

For this case, everything can be solved analytically (see
Supplemental Material [17]) leading to the bound

SN � N cos

�
�

N

�
; (11)

which can be reached by suitably chosen measurements.
This value has already occurred in the literature [11,20],
but only qubits have been considered. Our proof shows
that it is valid in arbitrary dimension. Note that the fact
that the maximal value is obtained on a qubit system is
not trivial, although the measurements are dichotomic.
For Kochen-Specker inequalities with dichotomic mea-
surements, examples are known, where the maximum
value cannot be attained in a two-dimensional system
[20], and also for Bell inequalities this has been observed
[27,28].

As a third application, we consider the noncontextuality
scenario recently discovered by S. Yu and C.H. Oh [29].
There, thirteen measurements on a three-dimensional sys-
tem are considered, and a noncontextuality inequality is
constructed, which is violated by any quantum state. It has
been shown that this scenario is the simplest situation
where state-independent contextuality can be observed
[30], so it is of fundamental importance. We can directly
apply our method to the original inequality by Yu and Oh,
as well as recent improvements [31] and compute the
corresponding Tsirelson-like bounds. We emphasize that
our results are not directly related to the phenomenon of
quantum contextuality, since no compatibility of the mea-
surements is assumed, but the results show the effective-
ness of our method even on complex scenarios, namely,
inequalities containing 37 or 41 terms, that involve sequen-
tial measurements. Our results are summarized in Table I.

Another class of inequalities is given by the guess-your-
neighbor’s-input inequalities [32], which if viewed as mul-
tipartite inequalities, show no quantum violation but a
violation with the use of postquantum no-signaling resour-
ces. We calculate the sequential bound for the case of
measurement sequences of length three, instead of mea-
surement on three parties. We consider

Pð000j000Þ þ Pð110j011Þ þ Pð011j101Þ þ Pð101j110Þ
� �C;Q � �S � �NS; (12)

with the notation Pðr1; r2; r3js1; s2; s3Þ as before, and pos-
sible results and settings ri 2 f0; 1g and si 2 f0; 1g. We
find that

�S � 1:0225; (13)

while it is known that �C;Q ¼ 1 and �NS ¼ 4=3, where
the indices C, Q, S, NS label, respectively, the classical,
quantum, sequential and no-signaling bounds. So, in this

case, the bound for sequential measurements is higher than
the bound for spatially separated measurements. This also
highlights the greater generality of our method in compari-
son with the results of Ref. [8]: there, only temporal
inequalities with sequences of length two have been con-
sidered, where in addition the measurements can be split in
two separate groups. In this case it turned out that the
bounds were always reached with commuting observables.
Our examples show that this is usually not the case, when
longer measurement sequences are considered.
Discussion and conclusions.—For interpreting our

results, let us note that our scenario is more general than
the scenarios considered by Leggett and Garg and Kochen
and Specker. Leggett and Garg consider a special time
evolution %ðtÞ ¼ UðtÞ%ð0ÞUyðtÞ, which is mapped in the
Heisenberg picture onto the observables. In our case, the
observables are not connected via unitaries; this corresponds
to a more general time evolution. Compared with the
Kochen-Specker scenario, our approach is more general
since it does not assume that themeasurements in a sequence
are commuting. Nevertheless, if one wishes to connect
existing noncontextuality inequalities to information pro-
cessing tasks, it is important to know the maximal quantum
values (also if the observables do not commute), in order to
characterize the largest quantum advantage possible.
Furthermore, we emphasize that in our derivation it was

assumed that the measurements are described by projective
measurements and this condition is indeed important. In
fact, this sheds light on the role of projective measure-
ments: one can easily construct classical devices with a

TABLE I. Bounds on the quantum correlations for the
Kochen-Specker inequalities in the most basic scenario. Three
inequalities were investigated. First, the original inequality pro-
posed in Ref. [29] and the optimal inequalities from Ref. [31]
with measurement sequences of length two (Opt2) and length
three (Opt3). For each inequality, the following numbers are
given: the maximum value for noncontextual hidden variable
(NCHV) models, the state-independent quantum violation in
three-dimensional systems (obtained in Refs. [29,31] for joint
measurements of compatible observables), the algebraic maxi-
mum, and the maximal value that can be attained in quantum
mechanics for the sequential measurements. The latter bound is
higher than the state-independent quantum value, since the
observables do not have to obey the compatibility relations
occurring in the Kochen-Specker theorem. Notice that the se-
quential bound is obtained as a maximization over the set of
possible observables and states; thus, it is in general state
dependent. Interestingly, in all cases the maximal quantum
values are significantly below the algebraic maximum.

NCHV State-independent Algebraic Sequential

Inequality bound quantum value maximum bound

Yu-Oh 16 50=3 � 16:67 50 17.794

Opt2 16 52=3 � 17:33 52 20.287

Opt3 25 83=3 � 27:67 65 32.791
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memory, which give for sequential measurements as in
Eq. (2) the algebraic maximum S5 ¼ 5. These classical
devices must also have a quantum mechanical description.
Our results show, however, that in this quantummechanical
description more general than projective measurements
must occur and a more general dynamical evolution than
the projection is required. From this perspective, our
results prove that the memory that can be encrypted in
quantum systems by projective measurements is bounded.

Our results lead to the question of why quantum me-
chanics does not allow us to reach the algebraic maximum
of temporal correlations, as long as projective measure-
ments are considered. We believe that proper generaliza-
tions of concepts such as information causality and
communication complexity might play a role here, but
we leave this question for further research. A first step in
explaining quantum mechanics from information theoreti-
cal principles lies in the precise characterization of all
possible temporal quantum correlations, and our work
presents an operational solution to this problem.
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