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Recent contributions in the field of quantum state tomography have shown that, despite the exponential

growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems

may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method

to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction

scheme only requires local information about the state, giving rise to a reconstruction technique that is

scalable in the system size. It is based on a constructive proof that generic matrix product operators are

fully determined by their local reductions. We discuss applications of this scheme for simulated data and

experimental data obtained in an ion trap experiment.
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The complexity of many-body systems is one of the
most intriguing, but at the same time daunting, features
of quantum mechanics. The curse of dimensionality,
namely the exponential growth of the descriptive complex-
ity of even pure states, is a property of quantum mechanics
which clearly distinguishes it from classical physics.
Therefore, in general, the number of variables required to
uniquely determine a quantum state increases in accor-
dance with the growth of the Hilbert space exponentially.

Quantum state tomography addresses the problem of
completely characterizing a state of a physical system by
measuring a complete set of observables that determine the
state uniquely [1]. As the complexity of quantum opera-
tions implemented in laboratories steadily increases [2–5],
the demand for a reliable and scalable tomography [6,7] of
prepared states is high and of considerable importance for
the future of quantum technologies. The ability to store and
manipulate interacting quantum many-body systems, such
as linearly arranged ions in an ion trap, was enhanced
rapidly during the last years. Soon, if not already, the
number of particles controllable in such systems will cross
the threshold for which conventional methods of full quan-
tum state tomography fail due to both the limited time that
is realistically available for the experiment and the limita-
tions to the resources that are available for the classical
postprocessing of the experimental data [2]. Further, while
most experiments have so far focused on the controlled
creation of pure states and scalable reconstruction methods
have been tailored to the pure setting [6,7], experimental
simulations of open system dynamics have begun to
emerge [8], calling for efficient tomography of mixed
states.

The experimental time requirement is defined by the
total number of measurements which have to be done to
reconstruct the state faithfully; i.e., one has to consider the
system size and the number of repetitions to obtain

sufficient statistics [9]. The postprocessing resources are
determined by the individual tomography scheme and in
particular by the representation of the state. Clearly, full
quantum state tomography where the state is represented
by an exponentially large number of variables will require
an exponentially increasing computational power and is
hence infeasible already for, e.g., trapped ion experiments
available today [4]. But many naturally occurring quantum
states and many states of interest for quantum information
tasks are completely characterized by a number of varia-
bles scaling moderately in the number of particles: ground
states of gapped local Hamiltonians [10–12], thermal states
of local Hamiltonians [12,13], the W state, the GHZ state,
and cluster states are all matrix product operators (matrix
product states if they are pure) of low dimension, or very
well approximated by them. These states are parametrized
by a linear number of matrices of low bond dimension. The
key insight here is not that these states are matrix product
operators or states (any state is a matrix product operator,
respectively state) but that the matrix dimension is low, in
particular independent of the system size. This solves one
issue concerning the postprocessing side of the problem
mentioned above as these states may be stored efficiently
on a classical computer. On the other hand, as we will see,
generic matrix product operators are not only completely
determined by a linear number of local observables but
may also be efficiently reconstructed from such local mea-
surements, which makes the formalism we present here a
powerful tool for quantum state tomography of mixed
states [14].
Recently, it has been demonstrated that the reconstruc-

tion of pure quantum states for large systems can be
possible with the knowledge of local information only
[6]. The scheme presented in the latter reference relies on
an efficient version of an iterative method first introduced
in the context of matrix completion. While the original
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method comes with a convergence proof, this guarantee is
lost in the efficient version. Here, we take a different
approach, which works provably under a mild technical
assumption on the state to be reconstructed and is not
restricted to pure states. We present extensive numerical
results for states not meeting the assumption guaranteeing
uniqueness of the reconstructed density matrix. In this
Letter we consider N d-level subsystems aligned in a
one-dimensional geometry, e.g., a chain of qubits (d¼2).
The aim is to reconstruct a mixed state %̂ from local
information only. The local information we have in mind
are estimates to all reductions of the state to a fixed number
R of contiguous sites. These may be obtained by estimating
the expectation values of an informationally complete set
of observables on the R sites. Note that we do not require
the estimates to the reductions to be states; i.e., empirical
estimates to the expectation values of local observables
suffice and postprocessing such as maximum likelihood
estimation is not required. As R is fixed, this corresponds to
an experimental effort that is linear in the system size N.
We present a computationally cheap tomography scheme
which scales polynomially in the system size N and suc-
ceeds provably under a certain technical invertibility con-
dition on %̂. We demonstrate numerically and at the hand of
experimental data (a W state on 8 qubits created in an ion
trap experiment [2]) that it still works well when this
condition is not necessarily met.

We begin our exposition of the tomography scheme by
introducing some notation. We denote the to-be-
reconstructed state by %̂. The input to the reconstruction
scheme are estimates of expectation values which com-
pletely specify all reductions of %̂ toR contiguous sites. We
denote these reductions by %̂k, k ¼ 1; . . . ; N � Rþ 1. Put
mathematically, %̂k ¼ trf1;...;k�1g[fkþR;...;Ng½%̂�, i.e., the trace
over all but the R sites fk; . . . ; kþ R� 1g. Now let

fP̂ð�Þ
i g�¼1;...;d2 be a complete operator basis for the site i.

A common choice for spin-1=2 particles is given by P̂ð1Þ
i ¼

1i=
ffiffiffi

2
p

, P̂ð2Þ
i ¼ �̂x

i =
ffiffiffi

2
p

, P̂ð3Þ
i ¼ �̂y

i =
ffiffiffi

2
p

, P̂ð4Þ
i ¼ �̂z

i =
ffiffiffi

2
p

, i.e.,
the orthonormal Pauli spin basis. We may then write

%̂ k ¼
X

�1;...;�R

hP̂ð�1Þ
k � � � P̂ð�RÞ

kþR�1i%̂P̂ð�1Þ
k � � � P̂ð�RÞ

kþR�1; (1)

i.e., the %̂k are completely specified by the local expecta-

tion values hP̂ð�1Þ
k � � � P̂ð�RÞ

kþR�1i%̂ ¼ tr½%̂P̂ð�1Þ
k � � � P̂ð�RÞ

kþR�1�,
estimates to which are the input to our tomography scheme.

The %̂k completely specify the state %̂ if a certain tech-
nical invertibility condition is met. The proof is construc-
tive and gives an explicit method for obtaining %̂ from the
%̂k. It is partly inspired by the characterization of finitely
correlated states (as opposed to C�-finitely correlated
states) on infinite spin chains as described in the early
literature (see Proposition 2.1 of Ref. [15]). In addition to
the fact that we are working in a finite and nontranslation
invariant setting, the main novel technical point here is that

we only use local information, provided by the %̂k. To state
the invertibility condition, we first need to establish some
notation. We collect the N sites of the one-dimensional
system in the set N ¼ f1; . . . ; Ng. For I � N , we define
the complex vector spaces VI spanned by

�

Y

i2I

P̂ð�iÞ
i

�

�i¼1;...;d2
: (2)

For given Ô 2 VN and I ;J � N we define the linear

map EJ
I :VJ ! VN nI as

X̂ � EJ
I ðX̂Þ ¼ trN nI ½X̂ Ô�: (3)

We note that the map EJ
I depends only on the reduction

ÔI[J ¼ trN nI[J ½Ô� of Ô to sites I [ J as

EJ
I ðX̂Þ ¼ trJ ½X̂ÔI[J �; (4)

this is illustrated in Fig. 1. Note that from now on we will
only consider cases where I [ J is connected.
Definition 1 (Invertibility): Let l, r 2 N, 2 � lþ r �

N � 2. If Ô is such that for all k 2 N, l � k � N � r� 1,
the equality

rank
h

Efkþ1;...;kþrg
fk�lþ1;...;kg

i

¼ rank
h

Efkþ1;...;Ng
f1;...;kg

i

(5)

holds, we call Ô (l, r) invertible.
We may now state the main theorem, a proof of which

may be found in Sec. A of the Supplemental Material [16].
Theorem 1: Let l, r 2 N such that 2 � lþ r � N � 2.

Let Ô 2 VN be (l, r) invertible. Then, for all X̂i 2 Vfig, the
equality

trN ½X̂1 � � � X̂NÔ� ¼ trN ½X̂1 � � � X̂lŶlÔ� (6)

holds. Here, the Ŷl 2 Vflþ1;...;lþrg are recursively defined as
follows. We set ŶN�r ¼ X̂N�rþ1 � � � X̂N and

Ŷ k�1 ¼ �Efk;...;kþr�1g
fk�l;...;k�1g

�
Efk;...;kþrg
fk�l;...;k�1gðX̂kŶkÞ

�
(7)

for k ¼ lþ 1; . . . ; N � r. Here, the bar indicates the
Moore-Penrose pseudoinverse.

Note that for Eq. (6) the reduction of Ô to sites
f1; . . . ; lþ rg is needed; for the inverse we require the

reduction of Ô to sites fk� l; . . . ; kþ r� 1g, and for

Efk;...;kþrg
fk�l;...;k�1gðX̂kŶkÞ we require the reduction of Ô to sites

FIG. 1 (color online). Definition of the sets N ¼ f1; . . . ; Ng
and I , J � N . The linear map EJ

I ðX̂Þ ¼ trJ ½X̂ÔI[J � maps

operators X̂ (e.g., observables) living on set J into operators on
set I by means of the reductions of Ô (e.g., the state) to I [ J .
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fk� l; . . . ; kþ rg. Hence, expectation values of the form

trN ½X̂1 � � � X̂NÔ� are completely specified by reductions

of Ô to the sites fk� l; . . . ; kþ rg, k ¼ lþ 1; . . . ; N � r,
i.e., by all reductions to R ¼ rþ lþ 1 contiguous sites.

By choosing the X̂i to be the basis operators P̂�i

i , this

implies that (l, r)-invertible operators Ô may be fully
reconstructed from their reductions to R consecutive sites,
which is the same as knowing the expectation values

tr ½P̂�k

k � � � P̂�kþR�1

kþR�1Ô�; �i ¼ 1; . . . ; d2; (8)

for all k ¼ 1; . . . ; N � Rþ 1.
One can prove that a vast majority of matrix product

operators fulfil the invertibility condition; i.e., a vast major-
ity of matrix product operators may be reconstructed from
local reductions alone (see Sec. B of the Supplemental
Material [16] for a technical proof). As noted above,
practically relevant states are (well approximated by)
matrix product operators of low dimension; i.e., we expect
the scheme to work for a large class of mixed states. Now,
of course, experimentally, the exact expectation values
even for states satisfying the invertibility condition are
only known to within a certain statistical error (e.g., the
estimated standard deviation of the mean after a finite
number of measurements). This error propagates into the

singular values of the map Efk;...;kþr�1g
fk�l;...;k�1g . As this map needs

to be inverted, even small errors on singular values close to
zero will lead to a large error in the reconstruction. This
issue may be avoided by using stochastic robust approxi-
mation techniques [17–19] (see Sec. C of the Supplemental
Material [16] for technical details). Before we apply the
reconstruction scheme to experimental data, we present
numerical results for states that do not necessarily fulfil
the invertibility condition and for which the local expec-
tation values are subject to inevitable statistical noise.

We restrict our attention to qubits d ¼ 2, and illustrate
the behavior of the tomography scheme for thermal states
of the Ising Hamiltonian at its quantum critical point

Ĥ ¼ � X

N�1

i¼1

�̂x
i �̂

x
iþ1 �

X

N

i¼1

�̂z
i : (9)

We obtain the thermal states by an imaginary time evolu-
tion [20,21] using the time evolving block decimation
(TEBD) algorithm. We simulate the measurements in the
following way. We first compute the exact local expecta-

tion values pk
�1;...;�R

¼ h�̂ð�1Þ
k � � � �̂ð�RÞ

kþR�1i%̂, �i ¼ 0, x, y, z,

for all k. Statistical noise is then simulated by adding
random numbers (drawn from a Gaussian distribution
with zero mean and standard deviation �) to them. The
resulting �pk

�1;...;�R
then serve as the input to our reconstruc-

tion scheme.We compare the reconstructed state %̂rec to the
exact state %̂ by computing the Hilbert-Schmidt norm
difference Dð%̂; %̂recÞ ¼ k%̂rec � %̂k2=k%̂k2. To obtain
meaningful results, we have rescaled the norm such that
the deviations are measured in units of k%̂k2, the natural

length scale of the state to be learned. In Fig. 2, we show
the norm difference for the exact and the reconstructed
states as a function of the system size N and the error �. It
indicates that, for given N, the error Dð%̂; %̂recÞ scales
roughly as �; similarly, for given �, it scales roughly as
N. In Sec. D of the Supplemental Material [16] we provide
further numerical experiments analyzing the performance
of the algorithm for thermal states of random next-
neighbor Hamiltonians and mixed states obtained by trac-
ing out parts of a matrix product state in a larger Hilbert
space. Again, these numerical results suggest that the
scaling of our scheme is polynomial in both N and �.
Let us finally apply the reconstruction scheme to experi-

mental data obtained in an ion trap experiment in a full
quantum state tomography setting. The considered state is
a W state implemented on N ¼ 8 qubits with local phases
[2], i.e.,

jWð�Þi ¼ ½j0 . . . 001i þ ei�1 j0 . . . 010i
þ � � � þ ei�N�1 j1 . . . 000i�= ffiffiffiffi

N
p

: (10)

The available experimental data are the set of relative
frequencies corresponding to 100 measurements in each
of the 3N different basis rotations (measurements along the
X, Y, and Z directions). From these, we obtain maximum
likelihood estimates to the reduced density matrices on all
blocks of R sites [22]. As described in the Supplemental
Material [16], we apply a stochastic robust approximation
technique to avoid difficulties in ill-conditioned inversion
problems making use of the Fisher information matrix of
the local estimates [22]. Let us stress that the input to the
reconstruction scheme are merely the relative frequencies
corresponding to the measurements on all subsystems of R
contiguous sites and the total number of measurements.
Absolute values of the reconstructed density matrices for

FIG. 2. Quality of our reconstruction scheme for thermal states
of the Ising Hamiltonian in Eq. (9) for � ¼ 5 and R ¼ 5, i.e., the
state is reconstructed from local expectation values on five
consecutive sites. For each pair (N, �), the plot shows the
mean of the norm difference obtained from 100 realizations
and renormalized by the purity of the exact state, i.e.,
Dð%̂; %̂recÞ ¼ k%̂rec � %̂k2=k%̂k2. This corresponds to 100 experi-
ments, each of which carries an uncertainty of � about the local
expectation values.
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R ¼ 3 and R ¼ 5 along with the maximum likelihood
estimate obtained in the full tomography procedure [2]
are presented in Fig. 3. Comparing the maximum
likelihood estimate with our results we find for the
renormalized Hilbert-Schmidt norm difference
Dð%̂ML; %̂recÞ ¼ 0:087 for R ¼ 3 and Dð%̂ML; %̂recÞ ¼
0:012 for R ¼ 5. For the full quantum state tomography
experiment, maximizing the fidelity of the maximum like-
lihood estimate with respect to the local phases of a pureW
state yields f ¼ hWð�optÞj%̂jWð�optÞi ¼ 0:722 [2]. With

the matrix product operator scheme we achieve a fidelity
of f ¼ 0:688 for R ¼ 3 and f ¼ 0:718 for R ¼ 5 with
respect to the optimal W state jWð�optÞi revealing that

the main contribution in our estimates stems from the
same jWð�optÞi as in [2]. We are only using local informa-

tion and hence a local addressing of the ions in the trap is
sufficient, resulting in the linear scaling of the scheme with
the number of constituents. Further, the full maximum
likelihood algorithm uses a huge amount of resources since
it requires the storage and manipulation of 6N measure-
ment operators resulting in a time consuming postprocess-
ing. In contrast, our reconstruction takes about one second

on a laptop given the local maximum likelihood estimates
and the corresponding Fisher information matrices [22].
In this Letter we have presented a scheme to reconstruct

mixed states from local measurements efficiently. We have
shown that, in principle, all states may be reconstructed
from reductions to contiguous sets of sites alone and that
the reconstruction is efficient with respect to the measure-
ment time and the postprocessing resources for practically
relevant states. It should be noted, however, that our rig-
orous performance guarantees apply only when the model
assumption of an essentially one-dimensional structure is
justified. As is the case for most statistical estimators, the
scheme is not suitable for model selection; i.e., it cannot
certify unconditionally from data alone that the model is
valid. To investigate the latter issue, the impact of statisti-
cal noise and the performance of the reconstruction scheme
for states that do not necessarily fulfil the condition which
guarantees perfect reconstruction have been investigated
for simulated states and experimental data in detail. For all
simulations the Hilbert-Schmidt norm difference (normal-
ized by the purity of the exact state) between the exact state
and the reconstructed state was obtained and the numerical
results suggest that the quality of the reconstruction scales
algebraically in N and �. The methods presented here
hence pave the way for the reconstruction of mixed states
of a large number of qubits.
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