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The structure and properties of the ferromagnet Tb1�xDyxFe2 are explored through the morphotropic

phase boundary (MPB) separating ferroic phases of differing symmetry. Our synchrotron data support a

first order structural transition, with a broadening MPB width at higher temperatures. The optimal point

for magnetomechanical applications is not centered on the MPB but lies on the rhombohedral side, where

the high striction of the rhombohedral majority phase combines with the softened anisotropy of the MPB.

We compare our findings with single ion crystal field theory and with ferroelectric MPBs, where the

controlling energies are different.
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The functional response of ferroelectrics with composi-
tions in the vicinity of a morphotropic phase boundary
(MPB) is significantly enhanced. At the MPB composition
PbZr:52Ti:48O3, lead zirconate-titanate (PZT) has long been
a material of choice for actuator applications [1]. New
Pb-free piezoelectrics such as ð1� yÞBaðZr:2Ti:8ÞO3 �
yðBa:7Ca:3ÞTiO3 also utilize the enhanced piezoelectric
response near the MPB [2]. The MPB separates two phases
of distinct symmetry, typically rhombohedral and tetrago-
nal, resulting in elastic boundaries between phases. PZT,
for example, is a pseudobinary alloy of tetragonal PbTiO3

and rhombohedral PbZrO3 with spontaneous ferroelectric
polarizations oriented along [100] and [111], respectively,
in the two phases [3–5]. At the atomic scale, two scenarios
describing the ferroelectric MPB have been proposed. Both
scenarios try to minimize the elastic and electric depolar-
ization energies, and appear very similar when probed by
bulk diffraction techniques [5,6]. In the first, supercells
incorporating local monoclinic distortions form along the
MPB, as suggested by synchrotron x-ray diffraction (XRD)
from PZT showing peak splittings typical of a low crystal
symmetry [4]. In the second, adaptive nanodomains form
from orientational variants of the parent phases. This sce-
nario explains the relations observed between the lattice
parameters of the component phases [6,7], and is supported
by recent high-resolution microscopy studies [8].

There are at least three types of MPBs distinguished by
ferroic order: ferroelectric, ferromagnetic, and ferroelastic.
Hybrid MPBs between ferroics of different nature should
also exist [9]. Information as to intrinsic MPB behavior
can be revealed from studies of ferromagnetic MPBs,
since in ferromagnets, the ferroic order and local atomic

displacements are readily separated. A previous XRD
study examined the MPB in the Tb1�yDyyCo2 ferromagnet

[10]. As in ferroelectrics, in Tb1�yDyyCo2 the MPB sepa-

rates rhombohedral and tetragonal structures of the parent
compounds TbCo2 and DyCo2, and coincides with an
enhancement in a ‘‘figure of merit’’ of magnetoelastic
properties.
Here we report on magnetometry, neutron diffraction,

and synchrotron XRD experiments on the pseudobinary
alloy Tb1�xDyxFe2 (TDF). We show that the ferromagnetic
MPB consists of a coexistence of the two crystallographic
structures of the parent compounds TbFe2 and DyFe2. The
volume fractions of these components vary continuously
across the boundary. Our measurements are summarized in
the phase diagram of Fig. 1 and compared with previous
measurements [11,12] plus the results of single ion crystal
field theory. We find that the MPB region, across which
phases coexist, widens with increasing temperature. This
reflects entropy-driven microstructural changes that lie
largely beyond the scope of single ion (mean field) theory.
Alloys of Tb1�xDyxFe2 (TDF) with x ¼ 0:650, 0.675,

0.700, 0.725, 0.750, 0.765, 0.780, and 0.800 at.% were
prepared at the Metals Preparation Center at Ames
Laboratory by arc melting the constituent elements on a
water-cooled copper hearth plate in a high-purity argon
atmosphere. To ensure homogeneity each alloy was melted
three times before being ground into a powder in an argon
atmosphere. The starting metals were Ames Lab 99.99%
Dy and Tb, and 99.95% pure electrolytic Fe. Magnetization
was measured using a Quantum Design SQUID.
Zero-field synchrotron XRD experiments were per-

formed at Argonne National Laboratory beam line 11-BM.
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The samples forXRDmeasurementswere further ballmilled
in an argon atmosphere before being sealed in 0.3 mm di-
ameter quartz capillaries. During the XRDmeasurement, the
sample temperature was controlled by a Cryostream N2 gas
blower (range 100 to 450 K) and the sample rotated contin-
uously to reduce preferred orientation effects. Twelve silicon
(111) crystal analyzers positioned in front of the LaCl3
scintillation detectors facilitated an instrument resolution of
�d=d� 2� 10�4. Rietveld refinements of XRD data were
performed using GSAS [13]. Neutron time-of-flight diffrac-
tion profiles in the range 12 to 320 K were collected at the
POWGEN instrument at the Spallation Neutron Source at
Oak Ridge National Laboratory. For these measurements,
sampleswere loaded into 8mmdiameter vanadiumcans, and
the data refined using the FULLPROF package [14].
In Fig. 2 we show XRD data as a function of temperature

across a series of Tb1�xDyxFe2 (TDF) alloys with x in the
range 0.65 to 0.78 at.%. We focus on the 440 Bragg
reflection (cubic or pseudocubic notation is used through-
out this Letter), compiling contour plots from the powder
XRD patterns taken in steps of � 2:5 K. Across the entire
TDF series, these contour plots (Fig. 2) show wide tem-
perature regions over which two phases coexist. At high
temperatures, the XRD pattern can be fitted with rhombo-
hedral R�3m symmetry [15]. The low temperature phase
was anticipated to be tetragonal I41=amd, but is fitted with
cubic Fd�3m symmetry, as the synchrotron XRD instru-
ment resolution is unable to resolve the small tetragonal
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FIG. 2 (color online). Contour plots showing the temperature dependence of the diffracted synchrotron x-ray intensity in the vicinity
of the 440 Bragg reflection across a series of Tb1�xDyxFe2 compositions (a) x ¼ 0:65, (b) x ¼ 0:70, (c) x ¼ 0:725, (d) x ¼ 0:75, and
(e) x ¼ 0:78. The solid white triangles in (a), (b), and (c) depict the sample magnetizationM in an applied field of 7:96 kAm�1. Each
MðTÞ curve has its maximum highlighted by an arrow.
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FIG. 1 (color online). Phase diagram of Tb1�xDyxFe2 (TDF).
The background shading shows the magnetic easy-axis direction
calculated using anisotropy parameters from crystal field theory
(see text). The easy axis reorients from h111i for TbFe2 to h001i
for DyFe2. Overlayed is the morphotropic phase boundary
determined from our synchrotron XRD (dotted lines) and mag-
netometry (solid line) measurements, as well as the easy axes
reported previously from Mössbauer spectroscopy (open sym-
bols) [11]. The cross in a circle indicates the optimal temperature
(40 �C) for magnetomechanical device applications, as deter-
mined for TDF x ¼ 0:73 [12].
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distortion & 1� 10�4 even in the parent DyFe2 [16].
In the transition region, the 440 reflection is clearly split
into three [Fig. 3(a)] corresponding to a coexistence of two
peaks from the high-temperature rhombohedral phase and
a single peak from the low-temperature phase. Systematic
profile fitting reveals that the width of the two-phase region
increases as the DyFe2 concentration x increases, or equiv-
alently as the MPB transition temperature increases. This
is summarized graphically in the phase diagram (Fig. 1)
where dotted lines delineate the two-phase region in which
both phase fractions are >25%.

Rietveld refinement of synchrotron powder XRD
patterns has become a standard tool for exploring the
structural changes around the MPB [4,5]. Motivated by
the reports of an intermediate monoclinic phase in

ferroelectrics [4], a third phase was trialed in the MPB
region of TDF. For TDF65 at 175 K, for example, we found
that the goodness-of-fit and Rietveld indices �2 and RBragg

improve to some extent from �2 ¼ 1:87 to 1.25 and from
RBragg ¼ 0:0685 to 0.0509 if a second cubic phase with a

different lattice constant is added. The refined strains of all
the phases are then reduced. On inspection, however, the
peaks do not appear visibly split in support of a third phase
[cf. Fig. 3(a)]. We surmise that two highly strained phases
coexist across the MPB. The relative populations of the
two phases as measured by the integrated diffracted inten-
sities are plotted for TDF65 in Fig. 3(b) along with our
magnetometry and neutron diffraction results. The magne-
tization MðTÞ measured in a low applied field (here we
show results for 7:96 kAm�1) shows a peak at 186 K
after both zero field cooling (ZFC) and field cooling. We
shall see that this peak corresponds to a reduced magnetic
anisotropy at the MPB. Our MðTÞ data for TDF70 and
TDF72.5 reveal peaks at 236 and 260 K, respectively,
as highlighted for the ZFC data overlayed on Fig. 2. Like
the structural coexistence region, the maximum in MðTÞ
broadens as the MPB transition temperature increases.
We note that analogous behavior has not been reported in
ferroelectrics.
A neutron powder diffraction study was carried out to

probe possible changes in the local magnetization. The
resolution of the neutron instrument is lower than that of
a synchrotron diffractometer and proved insufficient to
distinguish either the directions of the magnetic moments
or the rhombohedral splitting. All neutron data were
accordingly refined in a cubic setting. Profiles were col-
lected over the MPB in TDF65. In the refinements, thermal
broadening parameters coupling to the peak widths were
found to climb rapidly with increasing temperature as the
MPB region is entered, before resuming a normal slow rise
with temperature above the coexistence region. This is
consistent with enhanced accommodation strain in the
MPB region. Magnetic moments were refined for the rare
earth and iron sites simultaneously, yielding values of
� 9�B at the rare earth site and �� 1:9�B for the iron.
These remain invariant within experimental error across
the MPB [Fig. 3(b)].
In Fig. 1we compare the phase boundary determined from

our synchrotron XRD and dc magnetometry measurements
with previous results on the magnetic moment directions
deduced from Mössbauer spectra [11]. The agreement
between the three data sets is excellent. It is revealing to
see to what extent these observations can be explained by
single ion crystal field theory [17–20]. In Fig. 1 we plot, as
background shading, the magnetic easy-axis direction deter-
mined by minimizing the free energy consisting of magneto-
crystalline anisotropy terms K1, K2, K3, K4, including a
phenomenological correction �K1 to model the leading-
order magnetostrictive effects [18]. The magnetostriction
and Ki’s are temperature dependent, and are presumed to
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FIG. 3 (color online). (a) Typical profile fits of Tb1�xDyxFe2
synchrotron XRD data. Here profiles for x ¼ 0:70 in the vicinity
of the cubic 440 Bragg reflection are shown, at temperatures
where two structures coexist: the left (right) panel reveals a 25%
(75%) rhombohedral phase fraction from Gaussian peak fits.
The outer peaks (red lines) correspond to the rhombohedral
phase, the inner peak (green line) to the cubic fit. The blue lines
underneath show the difference plots. (b) Temperature depen-
dences across the MPB for x ¼ 0:65: (top panel) phase fractions
from the fitted peak intensities; (middle panel) magnetization
MðTÞ measured in an applied field of 7:96 kAm�1; (bottom
panel) ordered atomic moment determined by neutron diffrac-
tion. Dashed lines are guides to the eye.
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vary linearly with composition, following relations of the
form KiðalloyÞ¼ð1�xÞKiðTbFe2ÞþxKiðDyFe2Þ. The Ki’s
for the parent compounds TbFe2 andDyFe2 were calculated
in Ref. [19]. At temperatures�300 K, the observed location
of theMPB is coincident with themodel predictions (Fig. 1),
though elsewhere the agreement is not as good.

The single ion model explains the extended nature of the
transition in easy axis from h001i to h111i at the MPB.
However, we will see that the temperature dependence of
the transition width is not accounted for. In the model, the
spin reorientation occurs in two steps as illustrated by cuts
at constant composition (Fig. 4). Throughout, the easy axis
is found to be of huuvi type. The first step is a second-order
transition out of the h001i phase with the easy axis rota-
ting continuously with either temperature or composition.
This step is linked to the first-order magnetocrystalline
term (K1 þ �K1) transiting from positive to negative.
Continuous reorientations are permitted since K3 and K4

are nonzero, accounting for the easy-axis directions away
from principal crystal axes observed at low temperatures
[11,21]. The second step in the reorientation is a first-order
transition to h111i, exhibiting a discontinuity in the easy-
axis direction.

The softening anisotropy at the phase boundary is
anticipated to yield a maximum in the susceptibility, and
indeed this is seen by adding aM:H term in the free energy
that couples to the applied field H. The calculated poly-
crystalline MðTÞ is maximal at the first-order transition
rather than at the second-order transition (Fig. 4), consis-
tent with the proposition that a discontinuity in the ferroic
order at the MPB is prerequisite for enhanced properties
[22]. This can be borne in mind when comparing the
experimental MðTÞ with the structural data [Fig. 3(b)], in

particular noting that the optimal point for magnetome-
chanical device applications lies in the higher temperature
part of the MPB region (Fig. 1) [12]. In this part of
the phase diagram, two ideal effects coincide: the high
striction of the rhombohedral majority phase combined
with the softened anisotropy of the MPB region.
With increasing MPB temperature, the single ion model

predicts a diminishing width of the reorientation region
following the shrinking of the second-order region (Fig. 4).
This is in sharp contrast with experiment, where an increas-
ing width of the structural coexistence region is observed.
We find that atomic diffusion, which might be anticipated
to be significant at elevated temperatures, provides a
negligible contribution in accounting for the broadened
MPB character. At 500 K in TDF the Fe diffusion rate
�2� 10�31 cm2 s�1 based on the reported Co diffusion in
Co69Nb31 which also exhibits a C15 Laves phase structure
[23]. Taking a scenario of 3 h at 500 K, the average
diffusion distance� 5� 10�7 nm, a negligible value com-
pared to the TDF lattice constant of 0.73 nm.
To understand the differences between MPBs in ferro-

magnets and ferroelectrics, one must consider the govern-
ing energies. The MPBs in ferroelectrics are thought to
consist of nanotwinned mesostructures in which the polar-
ization changes continuously as a function of the twin
concentration as the boundary is traversed [6,7]. In other
words, their structure is elastically controlled and not
expected to be strongly temperature dependent. For
MPBs in ferromagnets the situation is rather different.
Here the magnetic polarization is determined by a balance
of exchange and magnetocrystalline anisotropy energies.
The latter has two components: atomic shape (crystal field)
and magnetoelastic anisotropies. The atomic shape com-
ponent �½MðTÞ=Mð0Þ�10 from single ion theory [17] and
dominates at low temperatures. The magnetoelastic com-
ponent �K1ðTÞ can be estimated by single ion theory,
yielding reasonable descriptions of the temperature
dependences observed in TbFe2 [24], DyFe2 [20], and in
TDF (see, e.g., Ref. [12] for x ¼ 0:73). �K1ðTÞ is seen to
fall off more slowly with temperature � ½MðTÞ=Mð0Þ�6
[12,17,24], becoming dominant at high temperatures.
With these contrasting dependences in mind, it is not
surprising that the MPB behavior is temperature depen-
dent. In terms of a free energy functional of the magnetic
easy-axis direction, the wider phase coexistence region can
be understood in terms of a flatter energy landscape at
higher MPB temperatures [25]. There the magnetocrystal-
line anisotropies Ki evanesce such that the free energy
wells of the h100i and h111i easy axes become more
shallow; orientational entropy will then copopulate these
minima over a broader thermal region.
In conclusion, we have performed magnetometry, syn-

chrotron XRD, and neutron diffraction on Tb1�xDyxFe2
alloys, focusing on the MPB region in the temperature
range 200 to 350 K pertinent to applications. We have
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compared our observations with single ion crystal field
theory. The latter indicates that there are two distinct
transition regions: the first, at lower temperatures, con-
sists of a continuous rotation of the magnetic easy axis
stabilized by higher order anisotropy terms K3 and K4. The
second is a first-order region that increasingly dominates
the MPB at elevated temperatures (Fig. 4). Our synchro-
tron XRD profiles are consistent with a first-order transi-
tion with continuously varying volume fractions between
two structural phases. The coexistence region broadens
as the MPB moves to higher temperatures (Fig. 1). This
contrasts with expectations from single ion theory and
furthermore with the MPB character in ferroelectrics.
The high-temperature broadening of ferromagnetic MPBs
can be understood in terms of diminishing magnetocrystal-
line anisotropies and associated entropic effects. More
advanced theory and experimental studies are called for
to complete the microstructural picture.
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