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We consider the Shannon mutual information of subsystems of critical quantum chains in their ground

states. Our results indicate a universal leading behavior for large subsystem sizes. Moreover, as happens

with the entanglement entropy, its finite-size behavior yields the conformal anomaly c of the underlying

conformal field theory governing the long-distance physics of the quantum chain. We study analytically

a chain of coupled harmonic oscillators and numerically the Q-state Potts models (Q ¼ 2, 3, and 4),

the XXZ quantum chain, and the spin-1 Fateev-Zamolodchikov model. The Shannon mutual information

is a quantity easily computed, and our results indicate that for relatively small lattice sizes, its finite-size

behavior already detects the universality class of quantum critical behavior.
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Entanglement measures have emerged nowadays as
powerful tools for the study of quantum many body sys-
tems [1,2]. In one dimension, where most quantum critical
systems have their long-distance physics ruled by a con-
formal field theory (CFT), the entanglement entropy has
been proved the most important measure of entanglement.
It allows one to identify the distinct universality classes
of critical behaviors. Let us consider a periodic quantum
chain with L sites and partition the system into subsystems
A and B of length ‘ and L� ‘, respectively. The entan-
glement entropy is defined as the von Neumann entropy of
the reduced density matrix �A of the partition A: S‘ ¼
�TrA�A ln�A. If the system is critical and in the ground
state, in the regime where the subsystems are large com-
pared with the lattice spacing, S‘ is given by [3,4]

S‘ ¼ c

3
ln

�
L

�
sin

�
�‘

L

��
þ �S; (1)

where c is the central charge of the underlying CFT and �s

is a nonuniversal constant. A remarkable fact is that even
in the case where the system is in a pure state formed by
an excited state, the conformal anomaly dictates the overall
behavior of the entanglement, similarly as in Eq. (1) [5].
It is worth mentioning that recently many interesting
methods were proposed [6–8] to calculate the entangle-
ment entropy and ultimately central charge; however, up
to now they have not been implemented experimentally.
A natural question concerns the possible existence of
other measures of shared information that, similarly as
the entanglement entropy, are also able to detect the
several universality classes of critical behavior of quantum
critical chains.

In this Letter, we present results that indicate that the
Shannon mutual information of local observables is such a
measure. The Shannon mutual information of the subsys-
tems A and B, of sizes ‘ and L� ‘, is defined as

IðA;BÞ � ShðAÞ þ ShðBÞ � ShðA [BÞ; (2)

where ShðXÞ ¼ �P
xpx lnpx is the Shannon entropy of

the subsystem X with probabilities px of being in a con-
figuration x. These probabilities, in the case where A is a
subsystem of a quantum chain with wave function
j�A[Bi ¼ P

n;mcn;mj�n
Ai � j�m

Bi, are given by the mar-

ginal probabilities pj�n
A
i ¼ P

mjcn;mj2 of the subsystemA,

where fj�n
Aig and fj�Bimg are the vector bases in subspa-

ces A and B.
It is important to notice that the Shannon entropy and

the Shannon mutual information are basis dependent quan-
tities, reflecting the several kinds of observables we can
evaluate in the system and subsystems. Since we are inter-
ested in the evaluation of local observables that can be
measured in any of the subsystems (sizes ‘ ¼ 1; . . . ; L),
we consider the only vector basis obtained from the tensor
product fj�1i � j�2i � � � �g of the local spin basis fj�iig
spanning the Hilbert space associated to the site i. In
Ref. [9], it was conjectured that the mutual information,
like the entanglement entropy, should follow the area law;
see also Ref. [10]. Many authors studied the Shannon
entropy of the one-dimensional quantum spin chains
[11–13] and found useful applications in classifying one-
and two-dimensional quantum critical points. Several
authors also studied different properties of the Shannon
mutual information in two-dimensional classical systems
[14,15]. They found that although the mutual information
of two halves of a cylinder has its maximum value at a
temperature higher than the critical temperature, its deriva-
tive diverges at the critical temperature. Most recently,
Um et al. [16] studied the mutual information of a sub-
region with respect to the rest in the periodic transverse
Ising model and surprisingly found that it has the same
dependence ln½sinð�‘=LÞ� as Eq. (1) but with a distinct
multiplicative constant. In this Letter, we study the Shannon
mutual information of local observables in different critical
spin chains and argue about their possible connections to
the central charge of the underlying CFT. Our results based
on the study of several quantum chains suggest that for
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periodic chains in the ground state, the Shannon mutual
information in the scaling regime (‘, L � 1) is universal
and has a dependence with the subsystem size ‘ similar to
the one of the entanglement entropy, i.e.,

Ið‘; LÞ ¼ c

4
ln

�
L

�
sin

�
�‘

L

��
þ �I; (3)

where c is the central charge of the underlying CFT and �I

is a nonuniversal constant. Up to the moment, in contrast
with the entanglement entropy, there is no simple general
field theoretical method to calculate the Shannon entropy
and consequently the Shannon mutual information. The
difficulty comes from the evaluation of the summation
over the amplitudes of the ground-state eigenfunction.

In order to justify our conjecture (3), we calculate the
Shannon mutual information for quantum systems in finite
geometries. We first present our analytical results for a
system of coupled harmonic oscillators (Klein-Gordon
field theory) and then our numerical analysis for several
critical quantum spin chains: the Q-state Potts model
(Q ¼ 2, 3, and 4), the spin-1=2 XXZ spin chain, and the
spin-1 Fateev-Zamolodchikov model in the antiferromag-
netic and ferromagnetic regimes.

Harmonic oscillator.—The Hamiltonian of L coupled
harmonic oscillators with coordinates�1; . . . ;�L and con-
jugated momenta �1; . . . ; �L is given by

H ¼ 1

2

XL
n¼1

�2
n þ 1

2

XL
n;n0¼1

�nKnn0�n0 ; (4)

where in the case of nearest-neighbor couplings the
interaction K matrix is just the discrete Laplacian. In the
continuum limit, the above Hamiltonian is the one of
a simple scalar free field theory (central charge c ¼ 1).
Let us now consider �A ¼ ð�1; �2; . . . ; �‘Þ and �B ¼
ð�‘þ1; �‘þ2; . . . ; �LÞ as the position vectors of the sub-
systems A and B and �A;B the respective momentum

vectors. The Shannon mutual information IðA;BÞ �
Ið‘; LÞ between two regions A and B is

Ið‘;LÞ¼
Z
dL�pð�A;�BÞ ln pð�A;�BÞ

p1ð�AÞp2ð�BÞ ; (5)

where pð�A;�BÞ ¼ j�0j2 is the total, and p1ð�AÞ ¼R½Qm2Bd�m�j�0j2 and p2ð�BÞ ¼
R½Qm2ðAÞd�m�j�0j2

are the reduced probability densities in position space
[�0ð�1; . . . ; �LÞ is the ground-state wave function].
Then, after simple integrations, one gets [17] Ið‘; LÞ ¼P

‘
i¼1 lnð2�iÞ, where �i are the eigenvalues of the matrix

C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XAPA

p
, and XA and PA are ‘� ‘ matrices

describing correlations of position and momentum within
subsystem A [18]. In other words, for 0< i, j < ‘þ 1,

we have ðXAÞij :¼h�i�ji¼ð1=2ÞðK�1=2Þij and ðPAÞij :¼
h�i�ji ¼ ð1=2ÞðK1=2Þij. We noticed that the above formula

is exactly equal to the quantum Rényi entanglement
entropy with n ¼ 2 [18], and consequently, using the

CFT techniques [4], one can get the following result for
a periodic system

Ið‘; LÞ ¼ 1

4
ln

�
L

�
sin

�
�‘

L

��
þ �I (6)

that agrees with the conjecture (3). It is worth mentioning
that the mutual Shannon information IðA;BÞ obtained in
a momentum basis also follows the same formula.
Quantum Q-state Potts model.—The model in a periodic

lattice is defined by the Hamiltonian [19]

HQ ¼ �XL
i¼1

XQ�1

k¼0

ðSki SQ�k
iþ1 þ �Rk

i Þ; (7)

where Si and Ri are Q�Q matrices satisfying the
following ZðQÞ algebra: ½Ri; Rj� ¼ ½Si; Sj� ¼ ½Si; Rj� ¼ 0

for i � j and SjRj ¼ eið2�=QÞRjSj and RQ
i ¼ SQi ¼ 1. The

system is critical at the self dual point � ¼ 1. ForQ ¼ 2, 3,
and 4, its critical behavior is governed by a CFT with
central charge c ¼ 1� ½6=mðmþ 1Þ� where

ffiffiffiffi
Q

p ¼
2 cosð�=mþ 1Þ. We first calculate the ground state of the
Hamiltonian (7) forQ ¼ 2, 3, and 4 in a different local spin
basis by exact diagonalization. We verified for the critical
chains we studied that, as the lattice size increases, the
Shannon mutual information exhibits a dominant behavior,
as conjectured in Eq. (3). In order to illustrate this result,
we show in Fig. 1 the difference Ið‘; LÞ � IðL=2; LÞ
obtained from the ground state at the critical point of the
Q ¼ 2, 3, and 4 Potts models. The calculations were done
by expressing the ground state in the basis where either the
matrices Ri or Si are diagonal. Apart from the initial point
‘ ¼ 1, we already see for these lattice sizes a quite good
agreement among the results in both basis. In order to show
the dominant ‘ dependence of Ið‘; LÞ and test Eq. (3),
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)

 Q=2 L=28 R basis
 Q=2 L=28 S basis
 Q=3 L=18 R basis
 Q=3 L=18 S basis
 Q=4 L=15 R basis
 Q=4 L=15 S basis

FIG. 1 (color online). Ið‘; LÞ � I½ðL=2Þ; L� as a function of the
subsystem size for the Q ¼ 2, 3, and 4 state Potts models in
the Ri and Si bases.
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we consider the difference Ið‘; LÞ � IðL=2; LÞ, since in
this case the nonuniversal constant �I is canceled. In Fig. 2,
we plot this difference, as a function of ln½sinð�‘=LÞ=4�,
for some lattice sizes of the Q ¼ 2, 3, and 4 state Potts
models. Clearly, the data of distinct lattice sizes collapse
in a straight line in agreement with Eq. (3). The angular
coefficient of these lines gives us the estimate cðLÞ, for
lattice size L. In Table I, we give these estimates. The
agreement with the predicted values is remarkable already
for the lattice sizes we considered.

XXZ quantum chain.—The model describes the dynam-
ics of spin-1=2 particles given by the Hamiltonian

HXXZ ¼ �XL
i¼1

ð�x
j�

x
jþ1 þ �y

j�
y
jþ1 þ ��z

j�
z
jþ1Þ; (8)

where �x, �y, and �z are spin-1=2 Pauli matrices and � an
anisotropy. This model provides an interesting check for

the universal behavior of the Shannon mutual information.
It has a continuous critical line �1 � �< 1, whose CFT
has a central charge c ¼ 1. According to Eq. (3), we should
expect a data collapse of Ið‘; LÞ � IðL=2; LÞ for distinct
lattice sizes and anisotropies.
In order to illustrate this fact, we plot in Fig. 3 the ratio

½Ið‘; LÞ � IðL=2; LÞ�=fln½sinð�‘=LÞ�=4g as a function of
‘=L. We clearly see that for distinct anisotropies and lattice
sizes, the ratio is close [20] to a constant value given by
the conformal anomaly. Similarly as we did for the Potts
models, the estimated values cðLÞ for the anisotropies
� ¼ 0 and � ¼ 	ð1=2Þ are shown in Table I.
Fateev-Zamolodchikov model.—This is a spin-1 model

whose Hamiltonian is given by [21]

HFZ ¼ �
XL
i¼1

f�i � ð�z
i Þ2 � 2ðcos�� 1Þð�?

i �
z
i þ �z

i�
?
i

� 2sin2�½�z
i � ð�z

i Þ2 þ 2ðS2i Þ2�g; (9)

where ~S ¼ ðSx; Sy; SzÞ are spin-1 SUð2Þ matrices, �z
i ¼

Szi S
z
iþ1, and �i ¼ ~Si ~Siþ1 ¼ �?

i þ �z
i . The model is anti-

ferromagnetic for � ¼ þ1 and ferromagnetic for � ¼ �1.
This is an important check for the conjecture (3) since the
model has a line of critical points (0 � � � ð�=2Þ) with a
quite distinct behavior in the antiferromagnetic (� ¼ þ1)
and ferromagnetic (� ¼ �1) cases. The antiferromagnetic
version of the model is governed by a CFT with central
charge c ¼ 3=2 [22] while the ferromagnetic one is ruled
by a c ¼ 1 CFT [23].
In Fig. 4, we show for � ¼ 	1 the ratio ½Ið‘; LÞ �

IðL=2; LÞ�=fln½sinð�‘=LÞ�=4g as a function of ‘=L. The
data are shown for the anisotropies � ¼ �=3 and � ¼ �=4
and for lattice sizes L ¼ 18 and L ¼ 20. We clearly see an
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 Q=2

Q=3

Q=4

FIG. 2 (color online). Mutual information for the Q ¼ 2, 3,
and 4 Potts models with different lattice sizes L. The dashed
straight lines are obtained from the fitting by using the largest
lattice size shown for each model. (The ground states were taken
in the Ri basis.)

TABLE I. Numerical values of the constant cðLÞ for Q ¼ 2, 3,
4 Potts models, the XXZ model (XXZ�), and the Fateev-
Zamolodchikov (FZ�

�) model. The expected values for the con-

formal anomalies together with the lattice sizes used in the
numerical calculation are also shown.

Q ¼ 2 Q ¼ 3 Q ¼ 4 XXZ�1=2 XXZ1=2

c 1=2 4=5 1 1 1

cðLÞ 0.49 0.79 1.00 1.00 1.03

L 30 19 14 30 30

XXZ0 FZ1
�=3 FZ1

�=4 FZ�1
�=3 FZ�1

�=3

c 1 3=2 3=2 1 1

cðLÞ 1.02 1.53 1.47 1.03 1.06

L 30 20 20 20 20

0 0.2 0.4 0.6 0.8 1
 l/L

0.93

0.97

1.0

1.03

1.07

 4
[I

(l
,L

) 
-I

(L
,L

/2
)]

/[
ln

(s
in

(π
l /L

)]

L=30 ∆=-1/2
L=28 ∆=-1/2
L=30 ∆=0
L=28 ∆=0

FIG. 3 (color online). Mutual information as a function of the
subsystem size for the XXZ model with different values of the
anisotropy � and lattice sizes L.
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agreement with the expected central charge of the corre-
sponding CFT. In Table I, we give the predicted values
cðLÞ, and the agreement is again quite good.

Conclusions.—All the analytical and numerical calcula-
tions presented in this Letter indicate the following
properties for the Shannon mutual information of local
observables for the ground state of critical quantum chains.
(a) The leading dependence with the subsystem size ‘
characterizes the universality class of the critical behavior
of the quantum chain. (b) The finite-size scaling function
ln½ðL=�Þ sinð�‘=LÞ� is the same as that of the entangle-
ment entropy. (c) The finite-size scaling, similarly to the
entanglement entropy, is proportional to the central charge
of the underlying CFT. An overall illustration of these
points is presented in Fig. 5, where we show for 2 � ‘ <
L� 1 the finite-size behavior of the Shannon mutual
information for the different models with central charge
c ¼ 1 presented in this Letter. This figure shows that
models whose Hamiltonians act on rather distinct Hilbert
spaces share the same universal behavior for the Shannon
mutual information of their ground states. Our results
indicate that the Shannon mutual information, similarly
to the entanglement entropy, provides excellent tools for
the evaluation of the central charge of conformal invariant
quantum chains. Although the numerical results presented
in this Letter are obtained by using the Lanczos method,
we also verified that the Shannon mutual information can
also be computed [24], for relatively large lattices, by using
the density matrix renormalization group [25].

Finally, we mention that the conjecture (3) announced
in this Letter raises several interesting questions to be
answered in the future. The first one concerns its proof
based on CFT calculations as done by Calabrese and Cardy
[4] in the case of the entanglement entropy. In the case of

the harmonic oscillator chain, we show that in the bulk
limit, the dominant part of the Shannon mutual information
is the same as that of the n ¼ 2 Rényi entanglement
entropy. A proof of this equivalence would produce as a
corollary the conjecture (3).
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