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We study the RKKY interaction in non-Fermi-liquid metals. We find that the RKKY interaction

mediated by some non-Fermi-liquid metals can be of much longer range than for a Fermi liquid. The

oscillatory nature of the RKKY interaction thus becomes more important in such non-Fermi liquids,

and gives rise to enhanced frustration when the spins form a lattice. Frustration suppresses the magnetic

ordering temperature of the lattice spin system. Furthermore, we find that the spin system with a longer

range RKKY interaction can be described by the Brazovskii model, where the ordering wave vector lies

on a higher dimensional manifold. Strong fluctuations in such a model lead to a first-order phase transition

and/or glassy phase. This may explain some recent experiments where glassy behavior was observed in

stoichiometric heavy fermion material close to a ferromagnetic quantum critical point.
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Introduction.—When magnetic moments are placed in a
metal, the conduction electrons mediate an indirect inter-
action between these moments. Such a long rang interaction
is called the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction. RKKY interaction plays crucial roles in, e.g.,
heavy fermions, diluted magnetic semiconductors, gra-
phene. The usual derivation of the RKKY interaction is
based on the assumption that the conduction electrons
form a Landau Fermi liquid (FL). However many strongly
correlated electron systems show non-Fermi liquid (NFL)
behavior, e.g., cuprates, heavy fermions, pnictides. The
question we ask here is what is the form of RKKY interac-
tion in a NFL metal, and what are the consequencies.

Of particular interest are heavy fermion systems, where
local moments couple to the conduction electrons. The
Doniach phase diagram with competing Kondo coupling and
RKKY interaction has been the paradigm for heavy fermions
for decades [1]. In the last few years, as experimental results
accumulate, there is a growing necessity to go beyond the
Doniachphase diagram.Frustrationor the quantumzeropoint
energy has been proposed as a new dimension in the global
phase diagram of heavy fermions [2–6]. One obvious origin
of frustration is frustration of lattice structure itself. However
such geometric frustration is not universally observed in
heavy fermion materials. Here we propose that the NFL
nature of conduction electrons in the Kondo liquid phase
leads to intrinsic frustration for the localized spin degrees of
freedom. This provides amore universal source of frustration.

Our approach is based on the idea of quantum criticality
and NFL behavior. The standard picture is that the critical
fluctuations near a quantum critical point (QCP) lead to
NFL behavior. Here we depart from this picture by starting
with the assumption that in a certain range of the para-
meter space, the itinerant electrons form a NFL state. We
then proceed to study its consequences on other degrees of
freedom, e.g., the localized spins. Focusing on the regime
with small Kondo coupling, i.e., a small Fermi surface,

we find that the magnetic transition temperature will be
reduced by the frustration resulting from longer-range
RKKY interaction produced by NFL itinerant electrons.
Furthermore, we find that the putative ferromagnetic (FM)
QCP may be replaced by a first-order phase transition or a
glassy phase [7,8] (see Fig. 1).
Formalism.—We start with the Kondo lattice model,H ¼

HC þHK. HereHC is the conduction electron Hamiltonian,
and ususally only the hopping term is included. The Kondo
coupling between conduction electrons and localized

spins is of the form, HK ¼ �ðJK=2Þ
P

i��Si � cyi����ci�.

We depart from the usual approach by considering the
conduction electrons to be strongly interacting themselves,

i.e., HC ¼ Hð0Þ
C þHðintÞ

C . One way to motivate this is to

consider the phenomenological two fluid model [9–12].
In many heavy fermion systems, below the coherence
temperature T�, the experimental results can be understood
in terms of the two fluid model, with one component the
itinerant heavy electrons, and the other component local
moments. The heavy electron Kondo liquid is not a simple
FL; e.g., the specific heat is logarithmically enhanced at
low temperature. One has a model of interacting itinerant
electrons coupled with localized spins.
The itinerant electrons induce a RKKY type interaction

among the localized moments,

HRKKY ¼ X
ij

Jabij S
a
i S

b
j : (1)

Here the coupling Jabij ¼�ðJ2K=4Þ�ab
ij [13–15], is deter-

mined by the static spin susceptibility of the conduction
electrons

�ab
ij ¼ � i

@

Z 1

0
h½saðri; tÞ; sbðrj; 0Þ�ie��tdt; (2)

with the electron spin saðriÞ¼
P

��c
y
i��

a
��ci� and � ¼ 0þ.

If the conduction electrons are in the paramagnetic state,
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the spin susceptibility is isotropic and diagonal, i.e., �ab
ij ¼

�ðrijÞ�ab. For FL, the spin susceptibility behaves as �ðrÞ�
ð1=rdÞcosð2kFrþ�0Þ at long distances, with d the spatial
dimension. This leads directly to the standard form of the
RKKY interaction. The exponent d results from the sharp
jump in the momentum distribution nðkÞ, characteristic
of FL. For NFL metals, the RKKY interaction can have
qualitatively different behavior. We still assume the exis-
tence of a Fermi surface, i.e., a singularity in nðkÞ; thus, the
spin susceptibility still has 2kF oscillation. The exponent
can take a different value. Thus we have �ðrÞ � ð1=r�Þ�
cosð2kFrþ �0Þ. More detailed studies of the NFL spin
susceptibility will be presented below.

Consider placing a lattice of spins in the NFL metal. We
focus on the effect of the RKKY interaction on the spin
system, and will not consider the competition between
Kondo coupling and RKKY interaction [1]. This can be
achieved by assuming the spins to be classical, or consid-
ering only the part of the phase diagram with a small Fermi
surface. With SðqÞ ¼ ð1=NÞPiSie

iq�ri , one has in momen-
tum space, H ¼ P

qFðqÞSðqÞ � Sð�qÞ, where
FðqÞ ¼ 1

N

X
ri�0

JðriÞeiq�ri ; (3)

with ri defined on the lattice. The orderingwave vector in the
ground state is determined by minimizing the function FðqÞ.

For the conventional three dimensional RKKY interac-
tion mediated by FL, this problem has been studied in [16],
where different phases have been identified as the conduc-
tion electron density changes. At small kFa, where a is the
lattice constant, the ground state is ferromagnetic. As kFa
increases, antiferromagnetic phases with different ordering
wave vectors appear. In the case kFa ! 0, the above
summation can be replaced by an integral, and FðqÞ �
��ðqÞ. The ordering wave vector is thus determined by
maximizing the static spin susceptibility.

Now we consider in more detail what is the form of the
static spin susceptibility in a NFL metal. When vertex

corrections can be ignored, the spin susceptibility can be
calculated from the fermion bubble, with �abðqÞ �R
�aGðkþ qÞ�bGðkÞ. When the momentum distribution

nðkÞ has a weaker singularity than a jump at kF, e.g., a
kink, the single particle density matrix nðrÞ decays faster
than that of FL (see Supplemental Material [17]). Then one
expects �ðrÞ and JðrÞ to decay faster than that of FL. An
interesting question is whether it is possible to have longer
range RKKYinteractions, whichwould generate the desired
frustration among the spins [2–6]. We will present two
models of NFL metals that can give rise to such behavior.
Longer range RKKY interaction in one dimension.—

First, as a proof of principle that RKKY interaction in a
strongly interacting electron system can be of longer range
than in a free system, let us first consider one dimension. In
one dimension, RKKY interaction mediated by free elec-
trons is of the form JðrÞ � Sið2kFrÞ � �=2, with the sine
integral function SiðxÞ. At large distance one has JðrÞ �
cosð2kFrÞ=r. In momentum space, one has �ðqÞ � ð1=qÞ�
lnjðqþ 2kFÞ=ðq� 2kFÞj, with a maximum at q ¼ 2kF.
The low energy dynamics of interacting electrons in one

dimension is described by the Luttinger liquid theory. Due to
spin-charge separation, the conduction electronHamiltonain
can be written as a summation of the two channels [18],

HC ¼ X
�¼c;s

v�

2

Z
dx½g��2

� þ g�1
� ð@x��Þ2�; (4)

with vc and vs the velocity of charge and spin density wave,
respectively. The charge interaction constant gc ¼ 1 for
noninteracting fermions, gc < 1 for repulsive interaction,
and gc > 1 for attractive interaction. We are interested in
the case with repulsive interaction. The spin interaction
constant gs ¼ 1 in the presence of SU(2) spin symmetry.
The oscillating part of the spin correlation function is [18]

hsðx; 	Þ � sð0; 0Þi � cosð2kFxÞ
j	þ ix=vcjgc j	þ ix=vsjgs : (5)

The RKKY interaction, determined from the static spin
susceptibility, is of the form

JðxÞ�
Z

d	
cosð2kFxÞ

j	þ ix=vcjgc j	þ ix=vsjgs �
cosð2kFxÞ
xgcþgs�1

: (6)

For gc < 1, gs¼1, the exponent �¼gcþgs�1<d¼1.
The RKKY interaction mediated by a Luttinger liquid is
thus of longer range than that mediated by a non-interacting
Fermi gas [19].
Spin susceptibility in two dimensions.—Now we con-

sider two-dimensional metals. For free electrons, the static
spin susceptibility reads

�ðqÞ ¼
(
�0 for q< 2kF

�0½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð2kF=qÞ2

p � for q> 2kF;
(7)

with �0 ¼ 1=�, which has a one-sided square-root
singularity. The RKKY interaction is thus of the form
JðrÞ � sinð2kFrÞ=r2. For a two-dimensional FL, including

aT

x

NFL

FL

bT

frustration

Magnetically

Magnetically

disordered

ordered

FIG. 1 (color online). Schematic electronic (a) and magnetic
(b) phase diagrams for a Kondo lattice model with strongly
interacting conduction electrons coupled to localized spins.
(a): Crossover from FL to NFL behavior. x represents non-
thermal tuning parameter, e.g., pressure, magnetic field, doping.
Distance dependence of RKKY interaction is shown in the insets.
(b): Magnetic transition temperature decreases with increasing
frustration resulting from NFL-mediated longer-range RKKY
interaction. New phases (shaded region), e.g., a glass phase,
emerge near the putative QCP.
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higher-order diagrams, there is also a square-root singularity
for q < 2kF, with �ðqÞ ¼ �ð2kFÞ þ �singðqÞ [21], and

�singðqÞ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðq=2kFÞ2

q
: (8)

The new singularity gives contribution ��ðrÞ � ½ð2kFrÞ�
cosð2kFrÞ � sinð2kFrÞ�=r3, and will not change the long-
distance behavior of the RKKY interaction.

A prototype of NFL metal in higher dimensions is the
system of two-dimensional degenerate fermions interacting
via a singular gauge interaction [22–29], where the presence
of the gauge interaction leads to singular 2kF response
[26,30]. The fermion 2kF vertex �2kF has a power law

dependence on frequency, with �2kF � ðEF=!Þ��0
2kF

. The

exponent is of the form �¼1=ð2NÞþ1=ð2�2N2Þln3Nþ
Oð1=N2Þ for large N, and � ¼ ð16 ffiffiffi

2
p Þ=ð9� ffiffiffiffi

N
p Þ þOð1Þ

for smallN. Here the spin index is generalized to take values
from 1 to N. Taking N ¼ 2, one obtains � ¼ 0:25 from the
large-N expansion, and � ¼ 0:56 in the small-N limit.

The spin susceptibility is calculated from the polarization
bubblewith vortex corrections [31],�ðq; !Þ ’ �ðq; !Þ ¼R
dpd
Gðp þ q=2; 
 þ !=2ÞGðp � q=2; 
 � !=2Þ �

½�
pðq; !Þ�2. For �< 1=3, the static spin susceptibility is

of the form [26]

�ðqÞ � �0 � Cjq� 2kFj1�3�; (9)

and for �> 1=3 one has [26]

�ðqÞ � 1

jq� 2kFj3��1
; (10)

with a singularity at q ¼ 2kF (see Fig. 2(a)). Fourier trans-
forming to real space, we find

�ðrÞ�
Z 1

jq�2kFj3��1
J0ðqrÞqdq�cosð2kFr��0Þ

r5=2�3�
: (11)

The exponent � ¼ 5=2� 3� can be much smaller than the
space dimension d ¼ 2.

More generally, for NFL metals, one can employ a
scaling theory for the susceptibility (see, e.g., [32,33]).
Assuming the existence of a Fermi surface, the static
spin susceptibility generally has a power law behavior
near q ¼ 2kF, with �ðqÞ � jq� 2kFj�. For � < 1=2, one
has a stronger singularity than the FL case, and the RKKY
interaction is of longer range.

Longer range RKKYinteraction in two dimensions.—Let
us now consider the ground state of the spins embedded in
two-dimensional metals with small kFa. For the FL case
[Eqs. (7) and (8)], �ðqÞ increases monotonically with
decreasing q (see Fig. 2). The ground state is ferromag-
netic. For NFL [Eqs. (9) and (10)], the maximum of �ðqÞ is
at q ¼ 2kF, and the ferromagnetic state is no longer the
ground state. More precisely, one can calculate the inter-
action FðqÞ by first Fourier transforming �ðqÞ to real space
to get �ðrÞ, and then performing the lattice summation in
Eq. (3). For simplicity we consider here the case of con-
duction electrons having an isotropic Fermi surface [34].
The result for � ¼ 1=2 is shown in Fig. 2(b). One can see
that FðqÞ has a minimum at q ¼ 2kF. The singularity in
�ðqÞ is smeared out by the lattice effect.
Another observation is that FðqÞ has a very weak

dependence on the direction of momentum. In Fig. 2(b),
FðqÞ for the three different angles are almost indistinguish-
able. With the minimum of FðqÞ at q0 ¼ 2kF, the ordering
wave vector of the lattice spin system lies on a shell of
radius 2kF. Expanding FðqÞ around q0, one obtains the
Brazovskii model [35],

H ¼ X
q

½b0 þDðjqj � q0Þ2�SðqÞ � Sð�qÞ: (12)

Brazovskii found that the large phase space available for
fluctuations around a shell of minima leads to a first-order
phase transition [35]. It has been found experimentally that
putative FM-QCPs are replaced by first order transitions at
low temperatures in several transition metal compounds,
e.g., MnSi, ZrZn2, and heavy fermion systems, e.g., UGe2,
UCoAl, UCoGe (see [36] and references therein). It was
realized earlier that competing orders [37] as well as
fluctuations [38–41] can lead to first order quantum phase
transitions. Here we find a new mechanism where the
frustration resulting from NFL behavior can generate first
order transitions.
A further observation is that the extensive config-

urational entropy in the Brazovskii model should lead to
slow dynamics and glassiness [42–45]. Glassy correlations

emerge when the correlation length � ¼ ðD=bÞ1=2 becomes
of order the modulation length l0 ¼ 2�=q0 [43]. The pa-
rameter b needs to be determined self-consistently. Within
the large-N approximation, and including a small quartic
term with coupling u, we have

b ¼ b0 þ uT
Z d2q

ð2�Þ2 GðqÞ; (13)

with the Green’s function GðqÞ ¼ 1=½bþDðq� q0Þ2�.
The condition �=l0 � 1 then determines the temperature
where glassy behavior sets in to be Tg ’ ð2�D2=uÞðq20 �
b0=D=c1 � logðq0aÞÞ, with the coefficient c1 of order unity
andmomentum cutoff��a�1. We notice that here Tg dep-

ends logarithmically on cutoff instead of the 1=� depen-
dence for the three-dimensional model considered in [43].
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FIG. 2 (color online). (a) The static spin susceptibility �ðqÞ
as a function of momentum for a FL (dashed, black) and the
gauge-fermion model with �< 1=3 (dotted, blue) and �> 1=3
(solid, red). (b) FðqÞ as a function of momentum for angles �¼0,
�=6, �=4. The curves for different angles are almost identical.
Here the spins form a square lattice, and � ¼ 1=2, kFa ¼ 0:2.
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Glassy spin dynamics was recently observed in the
heavy fermion system CeFePO [46]. CeFePO is a layered
Kondo lattice system, in close proximity to a FM QCP.
Spin-glass-like freezing was detected in the ac susceptibil-
ity, specific heat and muon-spin relaxation [46]. The glass
behavior in such a stoichiometric system points to new
mechanisms that do not depend on external randomness.
Our model provides such a possibility (see [47–52] and
references therein for earlier attempts to obtain glass
behavior from frustrated deterministic models).

Away from QCP.—We proceed to study the lattice
spin system away from QCP, to see how the change of
interaction range affects magnetic ordering. Due to the
cosin function, the RKKY interaction changes sign
and magnitude with distance. It can be well approximated
by a random interaction [53–56], Jij � ðJ2K=4Þð
ij=r�Þ,
where 
ij is a random variable with cosine distribution

Pð
ijÞ ¼ ð1=�Þð1� 
2ijÞ�1=2.

When the itinerant electrons are away from the QCP,
there is a crossover to FL behavior at low energy, or
equivalently long distance, where the RKKY interaction
is substantially reduced. We will assume for simplicity that
the RKKY interaction can be neglected beyond a crossover
scale rFL. Then the exchange interaction is of the form

Jij ¼
(
A
ij=jri � rjj� for jri � rjj< rFL

0 for jri � rjj> rFL:
(14)

We start with a lattice spin system that is magnetically
ordered when rFL is small. As rFL increases, the ordering
temperature will be reduced by frustration.

A simpler model that illustrates essentially the same
effect of suppression of ordering by frustration is the
Sherrington-Kirkpatrick model [57,58]. Consider here
ferromagnetic ordering. We start with a mean field type
Hamiltonian H ¼ �J0

P
ðijÞSi � Sj, with J0 > 0, and each

spin interacting with z neighboring spins. The spins order

ferromagnetically below the transition temperature Tð0Þ
c ¼

~J0SðSþ 1Þ=6, with ~J0 ¼ zJ0. This corresponds to the case
far away from the QCP.

Then we add to the above mean field ferro-
magnetic model random exchange interactions to model
the frustration effect when approaching a QCP. The new
Hamiltonian can bewritten asH ¼ �P

ðijÞJijSi � Sj, where

the interaction Jij is distributed according to PðJijÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffi
2�J2

p
exp½�ðJij � J0Þ2=2J2� [57,58]. This model is

readily solved by the replica technique [58,59], and the
transition temperature to ferromagnetism is reduced by the
random interactions, with the result [58,60]

Tc ¼ Tð0Þ
c

2
41

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

SðSþ 1Þ
~J2

~J20

vuut
3
5; (15)

where we have defined ~J ¼ z1=2J.

We fix the mean field ordering temperature in the absence

of random exchange interaction Tð0Þ
c and the variance of the

random distribution J, so that z is a measure of the range
of random exchange interaction, i.e., rFL in Eq. (14).We can
define zc ¼ ðSðSþ 1Þ=3Þ~J20=J2, and write Tc in the form

Tc ¼ Tð0Þ
c

"
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z

zc

s #
; (16)

which is plotted in Fig. 3. One can see that with increasing
range of random exchange interaction, the FM ordering
temperature decreases. This then translates to the picture
that when approaching the QCP, as RKKY interaction
becomes of longer range, magnetic ordering is suppressed
(see Fig. 1).
Conclusions.—We have studied RKKY interaction in

NFL metals. The basic picture we find is summarized in
Fig. 1. In some NFL phases, when including vertex correc-
tions, the RKKY interaction can be of longer range than in a
FL. Longer range RKKY interaction leads to frustration for
the lattice spin system placed in such a NFL metal.
Magnetic ordering will be suppressed by frustration, and
novel behavior may emerge near the putative QCP. In
particular, the continuous second-order phase transitions
may be replaced by first-order transtions. Glassy dynamics
may occur near the QCP without invoking disorder. One
candidate material for such glassy behavior is the heavy
fermion system CeFePO. We focused here on the FM QCP.
One can also generalize the whole procedure to the AFM
QCP by increasing kFa. A further question is whether
quantum fluctuations can destroy the spin glass phase and
produce a spin liquid state, as in the infinite-range random-
exchange model [61]. In Co- and Ge-doped YbRh2Si2, a
spin-liquid-type ground state was found in the region of the
phase diagram between the magnetic phase transition and
Fermi-surface reconstruction [62,63]. Another interesting
question is the competition between the Kondo coupling
and the longer range RKKY interaction.
We acknowledge useful discussions with Sasha
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FIG. 3 (color online). Ferromagmetic transition temperature as
function of range of random exchange interaction.
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