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Using Monte Carlo simulations and free-energy calculations, we determine the phase diagram of a

family of truncated hard cubes, where the shape evolves smoothly from a cube via a cuboctahedron to an

octahedron. A remarkable diversity in crystal phases and close-packed structures is found, including a

fully degenerate crystal structure, several plastic crystals, as well as vacancy-stabilized crystal phases, all

depending sensitively on the precise particle shape. Our results illustrate the intricate relation between

phase behavior and building-block shape, and can guide future experimental studies on polyhedral-shaped

nanoparticles.
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Recent advances in experimental techniques to synthe-
size polyhedron-shaped particles, such as faceted nano-
crystals and colloids [1–14] and the ability to perform
self-assembly experiments with these particles [15–22],
have attracted the interest of physicists, mathematicians,
and computer scientists [23–27]. Additionally, predicting
the densest packings of hard polyhedra has intrigued math-
ematicians since the time of the early Greek philosophers,
such as Plato and Archimedes [28,29]. Modern computer
platforms have made it possible to perform simulations of
these systems, which has resulted not only in an improved
understanding of the experimentally observed phenome-
nology in colloidal suspensions of such particles, but also
in improved Ansätze for the morphology of their close-
packed configurations [24,30–35].

The self-assembly of the basic building blocks at finite
pressures may differ substantially from the packings
achieved at high (sedimentation and solvent-evaporation)
pressures. For instance, liquid-crystal, plastic-crystal,
vacancy-rich simple-cubic, and quasicrystalline meso-
phases are stabilized by entropy alone under non-close-
packed conditions of hard anisotropic particle systems
[30–34,36,37]. Predicting the phase behavior from the
shape of the building blocks alone is therefore a major
challenge in materials science and is crucial for the design
of new functional materials. It is thus not surprising that
numerous studies have been devoted to providing simple
guidelines for predicting the self-assembly from the parti-
cle shape alone [32–34].

Recently, Henzie et al. [15] reported the shape-
controlled synthesis of truncated cubes. In their research,
the close-packed crystals of these particles were studied
using sedimentation experiments and simulations. They
created exotic superlattices, and their results also tested
several conjectures on the densest packings of hard poly-
hedra [23,25–27]. However, Henzie et al. did not examine

the finite-pressure behavior of the system. Mapping the
full phase diagram for the system of truncated cubes is
thus important, not only from a fundamental perspec-
tive but also to guide future experimental self-assembly
studies to fabricate new functional materials with these
building blocks.
In this Letter, we investigate the equilibrium phase dia-

gram of a family of truncated hard cubes, which interpolates
smoothly between cubes and octahedra via cuboctahedra.
Our calculations show that the phase diagram exhibits a
remarkably rich diversity in crystal structures that depends
sensitively on the particle shape. We find distinct changes
in phase behavior and crystal structures even for small
variations in the level of truncation. This is an unexpected
result, since the particle shape varies smoothly from that
of a cube to that of an octahedron by truncation. Moreover,
we find that the equilibrium concentration of vacancies,
which is already unusually high for a simple-cubic phase
of cubes [36], increases at a fixed packing fraction �
upon increasing the level of truncation. In this Letter, we
identify and describe in detail the different phases that we
obtained, as well as the nature of the phase transitions
between these phases.
The particles that we investigate are completely speci-

fied by the level of truncation s 2 ½0; 1� and the volume of
the particle; see Fig. 1(a) and the Supplemental Material
[38] for the definition of the truncated cube and additional
details. Two Platonic (cube and octahedron) and three
Archimedean (truncated cube, cuboctahedron, and trun-
cated octahedron) solids are members of this family.
Using the floppy-box Monte Carlo method [39–42] in

combination with a separating-axis-based overlap algo-
rithm [43], we first numerically determined the densest
structure and the corresponding packing fraction; see
Fig. 1(b). Note that the packing fraction ‘‘curve’’ is con-
tinuous but has discontinuities in its first derivative. Cubes
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(s ¼ 0) and truncated octahedra (s ¼ 2=3) are the only
shapes that have space-filling close-packed structures in
the entire s 2 ½0; 1� domain. We analyze our results by
considering the lengths vi of and the angles �ij (i < j ¼ 1,

2, 3) between the three lattice vectors that specify the
unit cell of the densest crystal structure; these quantities
are shown in Figs. 1(c) and 1(d), respectively. Numerical
analysis of the discontinuities in the (first derivative of the)
�, vi, and cos�ij curves allows us to partition the s 2 ½0; 1�
domain into 14 distinct regions.

We only briefly discuss the different close-packed struc-
tures here, and we refer the interested reader to the
Supplemental Material [38] for visual representations and
more detailed descriptions.We find (distorted) simple-cubic
[(d)sc] phases for s 2 ½0:00; 0:374�. For s 2 ð0:374; 0:40�
and s 2 ð0:40; 0:422�, we observe a large scatter in the
lattice vectors, which we expect to approach a continuous
spectrum for a larger number of simulations. This corre-
sponds to a degeneracy in the densest crystal structures. The
truncated cubes are arranged in a dsc crystal lattice, where
the particles form columns that are interlocked in a diagonal
way. This prevents lateral motion in the plane normal to the

column’s direction but allows motion in the direction of the
columns for the diagonally interlocked sheets; see Ref. [38]
for a visual representation. These structures are referred
to as monointerlocking distorted simple-cubic (MI dsc)
crystals. For s 2 ð0:422; 0:49�, a dsc crystal phase is found
that is interlocking in two directions (BI dsc), while for
s 2 ð0:49; 0:50Þ, a tri-interlocking dsc crystal (TI dsc) is
observed.Multiple instances of interlocking prevent motion
in the crystal, as also follows from the unicity of the results
in these regions in Figs. 1(c) and 1(d). For s 2 ½0:50; 0:54�
and s 2 ð0:63; 0:71�, three different distorted body-
centered-tetragonal (dbct) structures are found, and for
s 2 ð0:54; 0:63�, there is a regular body-centered-tetragonal
(bct) structure. Finally, for s 2 ð0:71; 1:00�, we observe the
Minkowski crystal phase. We thus find a remarkable diver-
sity in close-packed structures that depends sensitively on
the level of truncation. Below, we investigate the repercus-
sions of the 11 distinct close-packed structures on the
behavior at finite pressure.
Using the floppy-box Monte Carlo method results in

combination with regular isothermal-isobaric (NPT) simu-
lations and free-energy calculations, we are able to estab-
lish the phase diagram for hard truncated cubes, as shown
in Fig. 2. For s < 0:5, the particles are essentially ‘‘cubic’’
in shape, and we find high-density simple-cubic-like
phases. The phase diagram for truncated cubes with shape
parameter s 2 ½0:00; 0:35� displays three stable bulk
phases. At very high pressures, we observe a dsc crystal
phase similar to theC1 phase of Ref. [30]. This phase melts
either via a weak first-order or via a second-order phase
transition into a vacancy-rich simple-cubic (sc) crystal
phase. At even lower pressures, the sc crystal is found to
coexist with the fluid phase. For s 2 ð0:35; 0:422�, the
phase diagram exhibits four stable phases separated by
three two-phase coexistence regions. At sufficiently high
pressures, the systems self-assemble into their respective
densest-packed structures, which is the dsc (C1) structure
for s 2 ð0:35; 0:374� and the MI dsc phase for s 2
ð0:374; 0:422�. Upon lowering the pressure, a first-order
transition occurs to the dsc phase with the C0-like mor-
phology of Ref. [30]. By further lowering the pressure, the
dsc (C0) phase melts in all our simulations into a plastic
hexagonal close-packed (phcp) crystal structure, before
finally melting into a fluid phase. We find a dsc (C0)—
phcp—liquid triple point at s � 0:374. For s2ð0:422;0:5�,
we observe higher orders of interlocking of the dsc crystal
phase at sufficiently high pressures: a BI dsc and a TI dsc
crystal, respectively. These phases melt into the phcp phase
and subsequently into the isotropic liquid phase upon
lowering the pressure, again via first-order phase transi-
tions in both instances. Large lattice vector fluctuations and
the degeneracy of the respective crystal structures prohibit
free-energy calculations for s 2 ½0:35; 0:5�.
For s > 0:5 the shape is ‘‘octahedronlike,’’ and we find

bct-like structures at close packing. For s 2 ½0:5; 0:54�, the
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FIG. 1 (color online). (a) Five truncated cubes (Platonic and
Archimedean solids only) for levels of truncation s correspond-
ing to the orange lines from left to right: a cube, a truncated cube,
a cuboctahedron, a truncated octahedron, and an octahedron.
(b) The packing fraction � for the close-packed structures as a
function of s. (c) The length vi (i ¼ 1, 2, 3) of the three lattice
vectors, indicated in red, green, and blue, that span the unit cell
of the densest crystal structure. Not every line is clearly visible,
since there is some overlap. Black and gray dots are used in
regions with a degeneracy in the crystal structures. (d) The
cosine of the angles �ij (i < j ¼ 1, 2, 3) between the three vi

in (b). Gray vertical lines partition the s domain into 14 pieces
with a ‘‘different’’ crystal structure, based on the discontinuities
of vi and cos�ij.
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close-packed dbct phase melts into a plastic bct (pbct)
phase upon lowering the pressure via a first-order
phase transition. At even lower pressures, we find
two-phase coexistence between the pbct and the fluid
phase. Interestingly, although the particles in this pbct
phase rotate almost freely, their orientational distribution
is not isotropic, which gives rise to the pbct rather than a
plastic body-centered-cubic (pbcc) phase; see the movie in
the Supplemental Material [38]. In the region s2
ð0:54;0:636�, we obtain a regular bct phase at high pres-
sures, which undergoes a first-order transition into the pbct
phase for intermediate pressures. For s 2 ð0:636; 0:712�,
we find two different dbct crystal structures (dbct1 and
dbct2 in Fig. 2). The transition between dbct1 and dbct2 is
located at s ¼ 2=3 (the space-filling truncated octahedron
of which all sides are of equal length). Remarkably, this
system exhibits a body-centered-cubic (bcc) crystal struc-
ture, which exists only for this exact value of the truncation
s ¼ 2=3. Surprisingly, the close-packed crystal structures
in the region s 2 ð0:636; 0:712� melt directly into a liquid
phase via a first-order phase transition upon decreasing the
pressure without an intervening plastic-crystal phase.
Further increasing the truncation leads to more octahedron-
like shapes. In the region s2ð0:712;0:95�, we find a
Minkowski crystal [27], which melts into a stable pbcc
phase before melting into a fluid. However, for s 2
ð0:95; 1:0�, we find that the intervening pbcc phase
becomes metastable with respect to the Minkowski

crystal-to-liquid phase transition (see also Ref. [31]),
such that at s ¼ 0:95, an isotropic liquid—pbcc—
Minkowski crystal triple point appears in the phase dia-
gram. Typical configurations of plastic crystals and
vacancy-rich simple-cubic phases can be found in the
Supplemental Material [38]. The straight lines separating
the phase boundaries for s 2 ½0:374; 0:712� at high
packing fractions are a continuation of the subdivision
that follows from the distinct crystal structures at close
packing. Several simulations close to the boundaries
(on either side) are performed, to show that within the
numerical accuracy, there is no deviation from the
vertical.
Now that we have described the phase diagram, let us

return to the vacancy-rich sc phase for s 2 ½0:00; 0:374�.
We define the vacancy concentration � as the fraction of
unoccupied sites in the sc crystal lattice. To determine
the equilibrium vacancy concentration, we calculated the
free energy (per particle per kBT) fð�Þ as a function of �
for s ¼ 0:05, s ¼ 0:15, and s ¼ 0:25, at packing fraction
� ¼ 0:56 using the method as described in Ref. [36].
Surprisingly, Fig. 3 shows that the minimum in fð�Þ shifts
to higher � upon increasing the level of truncation s at a
fixed packing fraction. This is unlike the behavior observed
for parallel cuboids (smooth-edged, parallel-aligned cubes)
[37], which exhibit a constant vacancy concentration with
increasing roundness at fixed �. The vacancies are delo-
calized along rows in the crystal lattice, in accordance with
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FIG. 2 (color online). Phase diagram for the family of truncated hard cubes in the packing fraction � versus the level of truncation s
representation. In the dark-gray area, � exceeds the maximum packing fraction. The light-gray areas indicate the two-phase
coexistence regions. The solid square symbols denote the bulk coexistence densities as obtained from free-energy calculations, while
the open circles indicate those derived from the equations of state. Coexistence lines that follow from free-energy calculations are
represented by solid lines, and those that connect equation-of-state-derived points are given by dashed lines. The numbers that follow
the dbct label signify that these dbct phases are distinct. The two dsc phases have different morphologies: one is C0-like, and the other
is C1-like. Finally, the two white arrows in the forbidden region connect the label TI dsc to the small region between the green and
purple dashed lines and the label bcc with the turquoise line, respectively.
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the results of Ref. [36], since the particles can easily move
with respect to each other and fill up the vacated space.

The free energy of a system with vacancy concentration
� at a constant packing fraction � and for a given trunca-
tion level s is fð�Þ ¼ fcombð�Þ þ fdefð�Þ, where fcombð�Þ
accounts for the combinatorial entropy to place n � N �
NL vacancies at NL lattice sites, and fdefð�Þ is the free
energy of the crystal system that contains n ¼ �NL vacan-
cies. In accordance with the observations of Ref. [36], we
find that fdefð�Þ ¼ fdefð0Þ þ �f1 represents the data accu-
rately, suggesting weak interactions between vacancies.
Here, fdefð0Þ is the free energy of a system with no vacan-
cies and f1 > 0 is the free-energy cost to create a single
vacancy. We observe that f1 decreases with s at fixed �,
thereby explaining the increase in vacancy concentration
with the level of truncation by the reduced free-energy cost
to create a vacancy; see the Supplemental Material [38].

It is interesting to compare the present phase diagram
to that of hard superballs [30,31] for which the shape
interpolates also from cubes to octahedra, but via spheres
instead of cuboctahedra. Although there are similarities
between the two phase diagrams, such as stable plastic-
crystal phases in the center of the phase diagram, there
are also striking differences. (i) The stable plastic-crystal
regimes are much smaller for polyhedral particles than for
superballs. (ii) The phase boundaries of hard superballs
change continuously as a function of the shape parameter,
whereas the phase boundaries for truncated cubes exhibit
sharp transitions. These observations lead to the idea that
the more spread-out local curvature of the superballs
tends to favor the formation of rotator phases and overall
smoother phase behavior, whereas the polyhedral particles
with flat faces and sharp edges prefer to align the flat faces

to form crystals, which leads to sharp transitions even
though s varies smoothly.
Summarizing, we calculated the full phase diagram for

a family of truncated cubes, which interpolates smoothly
from a cube via a cuboctahedron to an octahedron. The
phase diagram shows a remarkable diversity in crystal
structures, despite the shape parameter changing smoothly.
Of particular interest is the discovery of a fully degenerate
crystal phase for certain levels of truncation (s � 0:4), in
which diagonally interlocked sheets of particles can move
with respect to each other in only one direction. In addition,
the latter system is remarkable since it exhibits a fluid
state and three different bulk crystals upon increasing the
pressure. Both of these qualities may make similarly
shaped nanoparticles suitable for the creation of highly
tunable functional materials, for which optical, electrical,
and rheological properties vary strongly with the bulk
pressure of the system. Finally, we showed that the equi-
librium vacancy concentration, which is already unusually
high for a system of cubes [36], increases even further by
truncation at a given � in contrast to the result for parallel
cuboids [37].
Although it is tempting to define general guiding rules

for the self-assembly of shape-anisotropic particles, the
shape sensitivity revealed by the present study shows
that one has to be cautious. After all, this also implies
that the effect of experimentally inevitable size and shape
polydispersity calls for further developments to analyze the
stability of structures, e.g., along the lines of Refs. [44,45].
Our present results provide a solid basis for future studies
of anisotropic particle systems and pave the way for a
full understanding of the recent experimental studies per-
formed on systems of nanoscopic truncated cubes.
We would like to thank F. Smallenburg and L. Filion for

providing data for hard cubes and for useful discussions.
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