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We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable

foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at

negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our

calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young

angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface

tension � and E is of molecular size. This finding indicates a new elastocapillary phenomenon that stems

from the high bendability of very thin elastic sheets rather than from material softness. We also show that

the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle in

modeling ‘‘drop-on-a-floating-sheet’’ experiments and enabling a quantitative, calibration-free use of this

setup for the metrology of ultrathin films.
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The partial wetting of liquids on solids is among the
most basic of capillary phenomena [1]. The fundamental
Young’s law relates the equilibrium contact angle #Y of a
liquid drop on a solid to the surface energies via

cos#Y ¼ ð�sv � �s‘Þ=�; (1)

where �sv, �s‘, and � ¼ �‘v are the mutual surface ener-
gies between the solid, vapor, and liquid. This classical
equation reflects a balance of forces on the contact line
only in the plane of the solid surface and assumes that the
normal component of the contact force (�� sin#Y) indu-
ces only slight, localized deformations of the solid.
However, the normal force balance must be considered
when the length ‘m � �=E (with E the Young modulus
of the solid) is larger than molecular scales [2–4]. Here,
minimization of the total energy, involving interfacial and
elastic components, requires a deviation of the contact
angle from #Y .

A totally different notion of elastocapillarity is realized
when a liquid drop is brought into contact with a stiff thin
sheet of thickness t that rests on a soft, easily deformable
substrate (e.g., a polystyrene sheet on water, as in Fig. 1,

for which ‘m � 0:2 �A) [5]. Here, the deformability of the
foundation enables the sheet to respond to the exerted
capillary force as a thin elastic body—by bending [6]
and developing in-plane stresses [7]. Furthermore, in ultra-
thin sheets where t� 10 nm, in-plane compression relaxes
completely through wrinkles whose number diverges as t
decreases [8–12]. The ‘‘drop-on-a-floating-sheet’’ experi-
ment (Fig. 1), which allowed a systematic study of this

high bendability regime, revealed a wrinkle pattern whose
size was comparable to the drop’s radius R (0.5–1.5 mm)
[7], indicating that the capillary force may affect in-plane
stresses and shape deformation on a very large lateral
length �R � t � ‘m. An important application of this
system is the measurement of thickness, surface energy,
and elastic moduli of ultrathin sheets from macroscale
features, namely, the extent and number of wrinkles.
However, previous studies have failed to provide a quanti-
tative, predictive link [7,13].

FIG. 1 (color online). (a), (b) Views of the wrinkle pattern
formed by placing a water drop on a floating ultrathin polystyrene
sheet (t ¼ 72 nm). The radius of the contact line is Ri. Radial
wrinkles appear in (a) an annular zone Ri < r < LO and (b) a
narrow annulus LI < r < Ri beneath the drop. Panel (b) is ob-
tained from confocal slices of a fluorescent sheet [14]. (c) A
schematic cross section depicts the forces acting at the contact line
(wrinkles are azimuthal undulations around this radial profile).
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In this Letter we identify the dimensionless groups that
govern elastocapillary phenomena and focus on highly
bendable sheets on a highly deformable foundation. This
regime is characterized by

‘m � t � ‘1=3m R2=3: (2)

Using the compression-free limit, known as the ‘‘relaxed
energy’’ [10] or ‘‘tension field theory’’ [11], we show the
following. (i) The contact angle between the liquid-vapor
and liquid-solid interfaces [# þ� in Fig. 1(c)] deviates
from #Y by an amount �#,

�# � ð‘m=tÞ1=3; (3)

which vanishes slowly as ‘m=t ! 0. This prediction differs
from that for soft solid films on hard substrates [2,3,5],
where �# is inversely proportional to the drop’s radius.
(ii) We calculate the stress profile in the sheet, from which
we extract the extent of the wrinkled region and compare it
with the experimental observations of [7] with no fitting of
parameters. Additionally, we present data from a variant of
the original experiment [7] that employs surfactants to
manipulate the stress in the sheet. The agreement with
our calculations substantiates the validity of our theoretical
approach and its usefulness for metrology of thin solid
films.

Our system is shown in Fig. 1. A circular polystyrene
spin-coated sheet of radius RO, thickness t, and Young
modulus E floats on a liquid bath (whose density is �)
and is pulled taut by the bath-vapor surface tension �0. A
small volume V of liquid of surface tension � ¼ �lv is
placed at the center of the sheet. The stretching and bend-
ing moduli of the sheet are, respectively, Y ¼ Et and B ¼
Et3=12ð1� �2Þ, where � is the Poisson ratio. The thick-
ness t is varied from approximately 30 to 300 nm. The
radius RO ¼ 23 mm, and the Young modulus is E ¼
3:4 GPa. The distinct values of liquid surface tensions
(�0 � �) are obtained by adding surfactants to the liquid
bath [14]. We define RðV; #YÞ to be the radius of the

contact line on an undeformed sheet: R ¼ ð3V=2�Þ1=3 �
sin#Yð1� 3=2 cos#Y þ 1=2cos3#YÞ�1=3. As Fig. 1(c)
shows, the pressure in the drop forces the film to bulge,
and hence the radius of the contact line, denoted here by Ri,
deviates from R.

The physical parameters can be arranged into six dimen-
sionless groups. The first two are #Y and �=�0, which are
determined by the surface energies. A second pair is

~K ¼ KR2=�0; ~R ¼ R=RO; (4)

where K ¼ �g. The parameter ~K�1 quantifies the deform-
ability of the liquid foundation, and ~R is the ratio between
the sizes of the drop and the sheet. In this study we assume
~K, ~R ! 0, corresponding to a sufficiently small drop; the
effect of ~K, ~R � 0 on the stress is perturbative [15,16]. The
final pair of parameters, essential for our study, involves
the elastic moduli of the sheet:

~� � �=Y ¼ ‘m=t; ��1 � �R2=B� R2‘m=t
3: (5)

Our theory and experiments are in the regime ~�, � � 1
[see Eq. (2)]. The parameter ��1 is the bendability [15],
and can be expressed as the ratio between the lengths R and
ffiffiffiffiffiffiffiffiffiffi

B=�
p

(often called the ‘‘elastocapillary length’’ [6]). In the
high bendability regime the sheet supports very small
levels of compression before and after buckling. As a
consequence, the elastic stresses in the sheet �rrðrÞ,
���ðrÞ are determined by ~� (and �=�0, #Y), and exhibit
weak, subdominant dependence on the bending modulus
(hence on �) [15]. This feature distinguishes our system
from [6], where bending forces are dominant and balance
surface tension.
As Fig. 1 suggests, the two parts of the sheet separated

by the contact line must be connected through boundary
conditions that reflect continuity of the radial displacement
field urðrÞ and force balance (in r̂) [17]:

uðIÞr ¼ uðOÞ
r ; (6)

�ðIÞ
rr cos�þ � cos# ¼ �ðOÞ

rr ; (7)

where �ðIÞ
rr , u

ðIÞ
r , and �ðOÞ

rr , uðOÞ
r , are, respectively, the radial

stresses and displacements in the sheet at the inner (I) and
outer (O) sides of the contact line, evaluated at r ¼ Ri. The
variables in Eqs. (6) and (7) are not independent. In the
high bendability regime, the Föppl-von Kármán (FvK)
equations that determine the displacement and stress in
the sheet depend in each region on a single confinement
parameter:

ðOÞ: 	 � �ðOÞ
rr =�0; ðIÞ: 
 � Y�2sin2#=2ð�ðIÞ

rr Þ3: (8)

The physical meaning of 
 and 	 will be explained below.
Using the known solutions to the FvK equations [15,19],

the displacements uðIÞr , uðOÞ
r as well as the angle � and the

radius Ri could be eliminated from Eqs. (6) and (7), and the
problem reduces to two equations for the three unknowns

�ðIÞ
rr ,�

ðOÞ
rr , and #. Following the proposal of [5], we find the

missing relation by minimizing the total energy UT , that
consists of the elastic energy of the deformed sheet and the
surface energies of the sheet, drop, and bath. The results of
this calculation, whose details appear in [18], are presented
in Fig. 2 for #Y ¼ �=2, a few distinct values of �=�0, and a
range of ~� � 1.
The confinement parameters 
 and 	 express the degree

of variation of the radial tension across each part of the
film, which gives rise to a compressive azimuthal (hoop)
strain [15,19]. The size of the wrinkled zone thus increases
with 
 and 	. In the outer part, 	 is the ratio between the

radial tension at the contact line �ðOÞ
rr and the bath tension

�0. In the inner part, 
 describes the ratio between the
radial tensions near the center of the film and at the contact

line. The latter is �ðIÞ
rr whereas the former is governed by

the ‘‘geometric’’ stress YðR= �RÞ2, where �R is the average
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radius of curvature of the bulged sheet. We estimate �R from

the relation P �R� �ðIÞ
rr that links the tension in the sheet

and the Laplace pressure in the drop P � �=R sin#.
An important outcome of Refs. [15,19] is that in both

inner and outer parts of the sheet the FvK equations yield
two distinct solutions for the stress field, whose character-

istic profiles are shown in Fig. 3. One solution,�ðaxiÞ
rr ðrÞ and

�ðaxiÞ
�� ðrÞ, corresponds to the axisymmetric state. Below a

critical confinement (
c � 5:16 [19], 	c ¼ 2 [20]), both
radial and hoop stresses are purely tensile. However, be-
yond these critical values, the axisymmetric state develops

hoop compression [�ðaxiÞ
�� ðrÞ< 0] in annuli LIð
Þ< r < Ri

and Ri < r < LOð	Þ, respectively, signaling the wrinkling
instability. In the high bendability regime, � � 1, where
only a tiny level of compression can be accommodated, the
unstable axisymmetric stress [which is the basis for stan-
dard ‘‘near threshold’’ (NT) and postbuckling theories]
must be replaced by a compression-free stress field that
satisfies ��� � 0 as � ! 0 (see Fig. 3) [9,10]. For a given

> 
c (	 > 	c), the compression-free stress is the basis
for a far from threshold (FT) theory of the wrinkled state

[15]. The dependence of the radii LI, LO on the confine-
ment demonstrates the difference between the NT and FT
predictions. For the outer radius [15,20],

NT : LO ¼ Ri

ffiffiffiffiffiffiffiffiffiffiffiffi

	� 1
p

; FT: LO ¼ Ri	=2; (9)

while for LI the NT result is known only numerically and

the FT behavior is LI ¼ Rið
c=
Þ1=5 [19]. These estimates
do not account for boundary layers between the wrinkled
and unwrinkled zones. The associated correction to the
wrinkle length vanishes slowly with � [21].
Let us consider now the parameter regime ~� � 1. Since

the modulus Y is much larger than the surface tension �,
we expect the sheet to approach its undeformed state with
# ! #Y and � ! 0. Furthermore, we expect (and confirm
below) that the stresses at the contact line increase with Y,
and hence can be approximated by the force balance at the

contact line, Eq. (7): �ðIÞ
rr � �ðOÞ

rr . The continuity of dis-
placement, Eq. (6), then yields after some algebra [18] the
asymptotic relation 
� logð	Þ. It is important to realize

that the displacements uðIÞr , uðOÞ
r at r ¼ Ri are determined

by the stress in the whole sheet. Hence, the slow variation
of 
 compared to 	 reflects the global distribution of stress
in the sheet, which favors hoop confinement (hence, a
larger wrinkled zone) outside the contact line rather than
beneath the drop. Our experiments exhibit this qualitative
trend. Furthermore, the finding 
� logð	Þ suggests that
the scaling behavior of the various observables can be
obtained (up to logarithmic corrections) by assuming 

reaches a constant value as ~� ! 0. Equation (8) then
immediately implies

�ðOÞ
rr � �ðIÞ

rr � �2=3Y1=3: (10)

This scaling result implies that the stresses at the contact
line are not affected by the ‘‘far-field’’ tension �0 of the
bath, but only by the nontrivial elastocapillary mechanics
of the sheet beneath the drop. A direct consequence of this
remarkable feature is that, for any fixed value of ~�, the
confinement 	� 1=�0 [see Eq. (8) and Fig. 2(a)]. As
Eq. (9) shows, the FT theory then predicts [22]

FIG. 2 (color online). (a), (b) Computed values of 
, 	 for
10�5 < ~� < 10�1. Here #Y ¼ �=2 and �0=� is 2 (red line; dark
gray), 1 (purple line; medium gray), 0.5 (blue line; light gray).
For ~� � 1 the various plots collapse upon rescaling 	 ! 	�0=�.
For sufficiently large ~�, both 
 and 	 are below their respective
threshold values; hence, the state is unwrinkled and described by
the axisymmetric solution. As ~� decreases, 
ð~�Þ and 	ð~�Þ
exceed their critical values (dashed lines: 
c � 5:16; 	c ¼ 2)
and our calculations describe the wrinkled state of the highly
bendable sheet (� ! 0) using the FT theory. (c) A log-log plot of
the angle � (see Fig. 1). Dashed line (guide to the eye) has a
slope 1=3. Data points: solid circles are taken from confocal
fluorescence microscopy measurements of the sheet’s profile
under the drop. Both bath and drop are water. The open circles
are from a different, but comparable configuration (where the
bath is glycerol [14]). Error bars are comparable to the symbol
size. (d) The ratio ð#Y � #Þ=� ! 1=2 as ~� ! 0.

FIG. 3 (color online). The stresses �rr [light gray (blue) line]
and ��� [dark gray (red) line] beneath the drop [(I), left] and
outside the contact line [(O), right] for representative post-
threshold values of the confinements: 
 ¼ 100, 	 ¼ 5. Solid
curves are the compression-free (FT) limit [15,19]. Dashed
curves are the axisymmetric (NT) limit.
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LO � �2=3Y1=3=�0 � t1=3 (11)

[see Figs. 4(a) and 4(b)]. This scaling law differs from the
empirical one proposed in the original experiment [Eq. (3)
of Ref. [7] ]. Another consequence of Eq. (10), which
follows from the vertical force balance at the contact line

(� sin# � �ðIÞ
rr sin�), is the scaling of the angle �� ~�1=3

[Fig. 2(c)]. Assuming the angle difference #Y � # is com-
parable (but not equal to) �, one finds the scaling of the
deviation �# from #Y , Eq. (3). Our calculation, which
minimizes the total energy UT , shows that #Y � # ! �=2
as ~� ! 0 [Fig. 2(d)]. We are unaware of any intuitive
argument for this angular ‘‘equipartitioning.’’

In Fig. 2, we have already demonstrated the agreement
with experiments of our theoretical treatment for deviation
from the Young angle. In the thickness range probed by our
measurements, the bendability is high, ��1 > 104, and
7� 10�5 < ~� < 10�3, a parameter regime in which the
FT limit is expected to apply. In Fig. 4, we compare the
measured extent of the wrinkled zone outside the drop with
predictions from the FT wrinkling theory. The procedure
by which the wrinkle length is determined from experi-
mental images is described in [18]. We demonstrate good
agreement between data and prediction, both in Fig. 4(a),
where we hold �=�0 fixed and vary ~�, and in Fig. 4(b),
where we vary �0 for a fixed ~�. In Fig. 4(c) we compare the
predicted profile of the sheet under the drop to the experi-
mentally determined profile. The overall form is similar,
but the amplitude is overpredicted. The numerical differ-
ence in amplitude reflects the difference between predic-
tion and measurement in Fig. 2(c). However, as shown in
that figure, the scaling of the amplitude with ~� is correctly
recovered. The numerical difference in the amplitude also
appears not to affect the successful prediction of the exter-
nal wrinkle length LO, thus enabling the use of this ge-
ometry as a quantitative probe of the mechanics of sheets.

Our work explains the wrinkle length in Fig. 1(a)
[Eq. (11)], a puzzle first posed in Refs. [7,13]. We also
predicted a change in the contact angle [Eq. (3)]. Beyond
the regime addressed here, the four dimensionless parame-
ters, Eqs. (4) and (5), constitute a framework for classify-
ing elastocapillary phenomena. Their importance can be
appreciated by considering previous studies [3,5,6]. To do
so, we generalize the stiffness K [Eq. (4)] to account for
elastic substrates of modulus Es, settingK � Es=R (with R
a characteristic deformation scale); this gives a deform-
ability ~K�1 � �=REs. References [3,4] addressed soft
films on undeformable substrates ( ~K � 1), and found
that the film deforms as a 3D body in a region of size t
near the contact line. Our study pertains to a stiff thin film
(~� � 1) on a highly deformable foundation ( ~K � 1) and
exhibits different behavior: the sheet responds to capillary
forces as a thin body by bending and stretching [5]. While
this limit is reminiscent of [6], there � & Oð1Þ (rather
than � � 1 here) and thus bending forces can balance
compression; additionally, Ref. [6] studied the limit

~R ¼ R=RO ¼ Oð1Þ while we have the case ~R � ~K1=2 �
1, so that a developable stress-free shape is impossible. The
wildly different behavior exhibited in each of these three
examples shows the importance of the four parameters in
Eqs. (4) and (5) and demonstrates the rich variety of
phenomena in this parameter space that remain to be
explored.
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