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By introducing a processing delay in the coupling, we find that it can effectively annihilate the
quenching of oscillation, amplitude death (AD), in a network of coupled oscillators by switching the
stability of AD. It revives the oscillation in the AD regime to retain sustained rhythmic functioning of
the networks, which is in sharp contrast to the propagation delay with the tendency to induce AD. This
processing delay-induced phenomenon occurs both with and without the propagation delay. Further this
effect is rather general from two coupled to networks of oscillators in all known scenarios that can exhibit
AD, and it has a wide range of applications where sustained oscillations should be retained for proper

functioning of the systems.
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Coupled nonlinear oscillators constitute an excellent
framework for understanding the various complex collec-
tive dynamics that spontaneously emerge in real-life sys-
tems [1-3]. Amplitude death (AD) [3-21], the quenching
of oscillations under coupling despite the fact that each
isolated unit remains oscillating is one such basic phe-
nomena, which has been explored in diverse areas of
science and technology [4]. AD is desirable in some real-
world applications such as in synthetic genetic networks
[7,8] and in laser systems [9,10]. In contrast, in many other
real situations AD is detrimental and should be avoided, as
oscillatory behavior needs to be retained for proper func-
tioning. Typical examples include cardiac arrest due to
cessation of normal sinus rhythm of pacemaker cells
[22], states that mimic brain death involving temporary
loss of parts of brain function and their related motor and
sensory organs resulting in paralysis [23-26], and main-
taining the output intensity of arrays of power generators
[11], mass synchronization (to a fixed point) leading to
pathological disorders [27]. Hence, the emergence of AD
in several such circumstances should be circumvented.

A few recent investigations proposed methods to avoid
AD in their corresponding parameter space [12,13].
Nevertheless, there lacks a general technique to efficiently
overcome AD arising from any known scenarios, which
remains an open challenge as emphasized in [4]. In addi-
tion, to the typically studied propagation delay, a process-
ing delay [28-30] emerges in dynamical systems due to a
finite response time required for internal processing of the
input information. For instance, it is a key component in
network delay (specifically at nodes with high degrees), in
control systems, in navigation, in machine learning, etc.
Relaxation time of dynamical systems, latency time in
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lasers, epidemics, economics, etc. are also a class of a
system’s internal processing delay.

In this letter, we present exclusive evidences that a pro-
cessing delay in the coupling competes with the quenching
effects of frequency mismatch [14,15] and propagation
delays [16,17] in circumventing the onset of AD by any
known scenarios including dynamic and conjugate cou-
plings [18,19]. It also effectively destabilizes AD due to
both stable homogeneous steady states (HSS) and inhomo-
geneous steady states (IHSS). This peculiar effect of a
processing delay, in reviving oscillations in the parameter
regime of AD, may provide a valuable clue to understanding
sustained oscillatory behaviors of many natural systems.
Examples include, repair and regeneration mechanisms of
animal and plant physiology, cortical networks, circadian
rhythm, epidemics, population dynamics, etc.

Let us start with a paradigmatic model of two coupled
Stuart-Landau limit-cycle oscillators [14-17],

Zi(n) =1+ iw; —1Z;0)1)Z;(t)
+K[ZW(t—6—1)—Z;(t— 8] (D)

where j, k = 1,2and Z,, = x;, + iy, are complex state
variables, w;, are the rotational frequencies of the two
uncoupled limit cycle oscillators, and K quantifies the
strength of coupling, and the delays 6 and 7 physically
account for the processing time and the transmission time,
respectively. The processing delay is the time taken by the
node Z; to process the information Z(t — 7) reached Z;
prior by 6. When K = 0, both oscillators exhibit stable
limit cycle oscillations |Z,| = |Z,| = 1 with frequencies
wy and w,, respectively. For 6 = 0, the unstable HSS Z; =
Z, = 0 of the uncoupled systems is stabilized for appro-
priate K and for large A = |w; — w,| with 7 = 0 [14,15]
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or in the presence of an appropriate 7> 0 for w; = w,
[16,17,31] leading to AD with the collapse of the stable
limit cycles.

In order to appreciate the effect of the processing time 0,
we first treat the coupled system (1) with 7= 0. The
stability conditions for AD for this case with 0 = O are 1 <
K < (14 A%/4)/2 and A > 2 [15], from which it is clear
that AD occurs for a certain interval of K if the frequencies
of both oscillators are sufficiently different. To our sur-
prise, with the introduction of the processing time 6 > 0 in
the coupling, we find that there is a critical threshold .(K)
above which the stable HSS (AD) becomes destabilized;
this is in strong contrast to the propagation delay 7 which
has the tendency to induce a stable HSS [16,17]. The
stability of the HSS is changed if the complex eigenvalue
A of the characteristic equation [31] crosses the imaginary
axis A = i3, which implies that the regaining of oscilla-
tions by the processing time & is via a Hopf bifurcation
[32]. The critical curve corresponding to 6.(K) is analyti-
cally deduced as [33]

2K+2K(B—w)%

5C(K) = min 5Ci(K)

(B—w)2+1+A2/4
ol s |
x

wE (B — W)

where W= (w; +w,)/2 and (B—Ww)i=1+A%/4+
2(K2—1)*=2J(1+A2/4)(K*—1)+(K*—K?+1). For an
illustrative example, Fig. 1(a) depicts the numerically
obtained stable HSS [31], AD regime (shaded region), in
the K — 6 space for w; =5 and w, = 15, where the
boundary is exactly enclosed by the minimum of the
critical curves 8.+ (K). The spread of AD region becomes
smaller and smaller for increasing 6 and completely dis-
appears if 6 > 6, = 0.073.

For a global perspective, Fig. 1(b) depicts the spread of
AD regions in the (K, A) space for § = 0, 0.03, 0.04, 0.05,
and 0.06, where w; = 10 — (A/2) and w, = 10 + (A/2).
The AD region shrinks monotonically as 6 is increased

and vanishes if & surpasses the critical value 6,=
max{5,.(K):1<K<(1+A?/4)/2 and A>2}=0.08. Thus,
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FIG. 1 (color online). Destabilizing the stable HSS in coupled
system (1), 7 = 0. (a) AD region enclosed by the critical stability
curves 8.+ (K) and (b) The effect of processing delay & on the
AD region.

the processing delay 6 competes with the quenching effect
of the frequency mismatch in switching the stability of the
stable HSS to revive stable oscillations above &, in the
parameter regimes of stable HSS (AD).

Reddy et al. [16] have established that the system (1)
experiences AD even for A = 0 for appropriate 7. Now, we
will show the influence of the processing delay & in this
scenario. Figure 2(a) depicts the AD islands in the 7-K
space for 6 = 0, 0.005, 0.01, and 0.02, respectively, where
w; = wy = 10. It is evident that increasing 6 monotoni-
cally reduces the AD island and it becomes unstable for
6 > &, reviving stable oscillations in the whole parameter
space. To quantify the degree of the spread of AD island
with respect to &, we introduce a normalized ratio R =
S(8)/S(8 = 0), where S(5) denotes the area of AD island
for 6. The dependence of R on § is displayed in Fig. 2(b).
We find that R monotonically decreases as & increases
acquiring R = 0 for 6 > 6. = 0.065. This indicates that
stabilization of the unstable HSS leading to AD does not
occur for any K and 7 above 6. Hence, it is also clear that
the processing time-delay & can destabilize stable HSS
(AD) even in delay-coupled identical oscillators, thereby
reviving oscillations.

Recent investigations have revealed that AD can also
occur in coupled identical oscillators even without propa-
gation delays using dynamic [18] and conjugate couplings
[19], where the underlying mechanism for the onset of AD
is significantly different from each other. Surprisingly, we
find that the processing delay ¢ is also capable of inhibiting
the onset of stable steady states in both these scenarios.
Consider a system of two coupled Stuart-Landau oscilla-
tors with dynamic coupling [18]

x; = pjx; —wy; + K(u;(t — 8) — x;(t — 9)), 3
Yi=wxptpyyp o wp = —up g,
and conjugate coupling [19]
X = pix; —wy; + K(y(t = 8) — x;(t — 9)), @
yi=wx; + p;y; + K(x(t — 8) — y;(t — 9)),
40 — 1.0
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FIG. 2 (color online). Destabilizing the stable HSS in coupled
system (1), 7> 0. (a) The effect of processing delay & on the
AD island and (b) The ratio of the AD island area R =
S(8)/S(6 =0) vs 6.
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FIG. 3 (color online). Destabilizing the stable HSS in coupled
system (3) with dynamic coupling [(a) and (b)] and (4) with
conjugate coupling [(c) and (d)]. (a) and (c): The largest real part
Armax Of A vs K [34]. (b) and (d): the critical value &, vs. w.

where j, k= 1,2, j # k, andpj=1—|Zj|2=1—xf—yJZ.
The characteristic equations determining the stability of
the origin (AD state) in the coupled systems (3) and (4) can
be directly obtained [34]. For 6 = 0 and a sufficiently large
w, the coupled systems (3) and (4) can experience AD for a
certain range of K depending on w. However, when turning
on the processing delay & > 0, the range of AD decreases
and even vanishes if 6 > §,; see Figs. 3(a) and 3(b) for the
dynamic coupling as well as Figs. 3(c) and 3(d) for the
conjugate coupling. For both coupling types, §. is an
exponentially decreasing function of w, which well obeys
a power law relation as shown in the insets with the log-log
fittings [Figs. 3(b) and 3(d)]. This reveals that AD is
efficiently avoided for all values of K above &, for a given
w. Hence, the competing effect, destabilizing the stable
HSS, of the processing delay 6 in regaining the stability of
oscillations in the coupled systems are fairly general for
different coupling scenarios that stabilize the unstable HSS
giving rise to AD.

Now, we illustrate that the processing delay 6 is also
capable of annihilating the onset of inhomogeneous AD,
which is induced by the birth of a new set of stable IHSS
due to the coupling. For this purpose, we consider a system
of two coupled Brusselators [6]:

X;=—(B+ x;+x7y; + A+ K(x(r — 8) = x;(t = 9)),
y; = Bx; _X3Yj + K(yi(t — 8) — y;(t = 8)), (5)

where j, k=1, 2, j # k. For B=10 and A = 2, each
uncoupled Brusselators exhibit a stable limit cycle oscil-
lation and has an unstable HSS (x,, = A, y,, = B/A). AD
in (5) with 6 = 0 was investigated quite extensively in [6].
The HSS is unstable for all values of K, but at intermediate
levels of K, stable IHSS exists; i.e., inhomogeneous AD
appears. We have reproduced the stability diagram of

steady-state solutions of [6] for 6 = 0 in Fig. 4(a). The
dependence of the steady states, x| ,, on K is shown there,
where red bold lines represent stable steady states and
black thin lines correspond to unstable ones. The presence
of processing delay 6 in the coupling does not change the
structure of the steady-state solutions, but just switches
their stability. Figures 4(b)—4(d) depict the solution dia-
grams of the steady states for 6 = 0.3, 0.5, and 0.7, respec-
tively. It is evident that the stable IHSS region is gradually
reduced for increasing &. To clearly manifest the effect of
8 on the stable IHSS, a normalized factor R =
L(8)/L(8 = 0) is introduced, where L(8) denotes the
length of the stable IHSS (inhomogeneous AD) for a given
6. Figure 4(e) illustrates the dependence of R on 6.
Interestingly, we find that R is a nonmonotonic function
of & reaching R = 0 for 6 > 8. = 5.13, which indicates
that the AD region ceases to exist. This asserts that inho-
mogeneous AD induced by the coupling can also be desta-
bilized by the processing delay for 6 > 6, leading to
sustained oscillations.

Finally, we demonstrate that the processing delay 6 is
even capable of reviving oscillations in AD regimes of
large (arbitrary) networks. This is illustrated in a network
of N (N = 2) coupled Stuart-Landau oscillators:

- N
Z;=01+iw;,—Z,1*Z;

N
I e T
where j=1,2,..., N. The network topology is deter-
mined by gj, as follows: if two oscillators j and s are
connected, then g;; = g;; =1 (undirected), otherwise
gjs = &j = 0and g;; = 0. d; denotes the degree of oscil-
lator j. If N = 2, (6) is degenerated to (1). For a network of
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FIG. 4 (color online). Destabilizing the stable IHSS in two
coupled Brusselators (5). (a)—(d) Solution diagrams of steady
states, where red bold lines correspond to stable steady states and
black thin lines to unstable ones. (e) The ratio of the length of
stable THSS interval R = L(8)/L(8 = 0) vs . The points with
values of & used in (a)-(d) are highlighted with red color.
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FIG. 5 (color online). Destabilizing the stable HSS in a net-
work of delay-coupled oscillators, Eq. (6). w; = 10. (a) The
effect of processing delay 6 on AD island with py = —0.96.
(b) The critical value 6, linearly increasing as py increases with
the slope of 0.0313.

N identical oscillators (w; = w), performing a standard
linear stability analysis of (6) around the origin yields the
following N characteristic equations:

A=1+iw—Ke " + Kpje AT+, (7)

Here, p;’s are eigenvalues of the network matrix G=
(gjs/d;)nxn-» which are ordered as 1.0=p;=p,=---=
—1/(N—1)=py=—1.0. The network (6) suffers AD if
and only if all the roots of Eq. (7) have negative real
parts forevery p; (j = 1, 2,..., N). Ordering p;’s by study-
ing the qualitative dependence of Re(A) on p;, it is proved
that the boundaries of AD island are defined by only two
extreme eigenvalues: p;(p; = 1) and py [11,35]. py com-
pletely characterizes the effect of the connection topology
(arbitrary network) on the occurrence of AD; the size of the
corresponding AD island monotonically increases with
the increase of py. In Fig. 5(a), we plot the AD islands of
the coupled system (6) with p = —0.96 for a ring network
with N = 11 nodes in the (7, K) space for 6 = 0, 0.005,
0.01, and 0.02, and w = 10. Increasing 6 rapidly decreases
the AD island and completely eliminates AD if 6 > 6. The
value of 6. depends on py, e.g., 6, = 0.066 for py =
—0.96 in Fig. 5(a), while 6. = 0.065 if py = —1.0 for
two coupled oscillators in Fig. 2. Figure 5(b) shows the
relation between 6, and py, where the moderate linear
increase of 6. with py reveals the high efficiency of the
processing time delay & in avoiding AD in an arbitrary
network.

In summary, we have shown that the processing delay,
different from typical propagation delay, offers a general
technique to overcome AD in coupled systems to sustain
oscillations. The phenomenon of AD can be completely
annihilated by the processing delay by switching the stabil-
ity of stable HSS and IHSS in all known coupling scenarios
that can give rise to AD from two coupled systems to an
arbitrary network. Reviving of oscillations by the process-
ing time & in all the cases occurs via a Hopf bifurcation.

This is also confirmed in other dynamical systems exhib-
iting more complex dynamics such as modified Stuart-
Landau limit-cycle oscillators by including a delay in its
variable, chaotic Rossler oscillators, excitable FitzHugh-
Nagumo elements, and Mackey-Glass time-delayed sys-
tems even in its hyperchaotic regimes; which underscores
that the underlying phenomenon is very generic. The
introduction of the processing time in the coupling is
capable of retaining rhythmic activity and enhancing the
oscillatory intensity in the parameter regimes of AD above
6. This ability in coupled oscillators or networks is impor-
tant for several applications despite a large heterogeneity in
their intrinsic frequency [15] and a large spread of propa-
gation (distributed) delays due to the spatial separation
[20] of the individual oscillatory units. The presence of
even a small fraction of the processing time will have a
significant implication on the proper functioning and
robustness of large networks such as power grids, neural
networks, lasers, epidemics, ecology, etc.
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