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Accurate and Efficient Approximation to the Optimized Effective Potential for Exchange
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We devise an efficient practical method for computing the Kohn-Sham exchange-correlation potential
corresponding to a Hartree-Fock electron density. This potential is almost indistinguishable from the
exact-exchange optimized effective potential (OEP) and, when used as an approximation to the OEP, is
vastly better than all existing models. Using our method one can obtain unambiguous, nearly exact OEPs
for any reasonable finite one-electron basis set at the same low cost as the Krieger-Li-lafrate and Becke-
Johnson potentials. For all practical purposes, this solves the long-standing problem of black-box
construction of OEPs in exact-exchange calculations.
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The purpose of this Letter is to suggest an essentially
exact, robust, practical method for constructing the opti-
mized effective potential (OEP) [1] of the exact-exchange
Kohn-Sham scheme. OEPs naturally arise in the theory of
orbital-dependent functionals [2]—one of the most prom-
ising modern density-functional techniques—and are of
significant practical interest because they afford qualita-
tively better description of molecular properties than local
and semilocal approximations [1,2].

The exchange-only OEP is defined [3] as the multipli-
cative potential v$EP(r) that minimizes the Hartree-Fock
(HF) total energy expression within the Kohn-Sham
scheme. Equivalently [4], the OEP is the functional
derivative vQEP(r) = SEY®!/5p(r), where EA is the
HF exchange energy expression written in terms of
Kohn-Sham orbitals (an implicit density functional) and
p(r) is the electron density. To obtain v$EF(r) in a for-
mally correct manner, one has to solve the OEP integral
equation [1]. Unfortunately, every attempt to do this runs
into severe numerical difficulties because the problem is
ill-posed [5] and has infinitely many solutions in finite
basis sets [5,6]. Recent advances in OEP methods [7—-14]
have alleviated some of these difficulties but, even today,
flawless OEPs can be obtained only case by case, with
painstaking effort.

In the absence of an efficient OEP solver, various
approximations to the OEP have long been used as prag-
matic alternatives. These include the Krieger-Li-lafrate
(KLI) [15], localized Hartree-Fock (LHF) [16], and related
approximations [17-20], as well as model potentials for
exact exchange [21-25], of which the Becke-Johnson (BJ)
approximation [23] is the most popular. The LHF method
is equivalent [20] to the common energy denominator
approximation (CEDA) [17] and to the effective local
potential (ELP) scheme [19].

In a parallel development, several workers studied [26-29]
the HF method as a density-functional problem and
occasionally observed [30,31] that Kohn-Sham exchange-
correlation potentials corresponding to HF electron densities
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(HFXC potentials) were very close to OEPs. However, this
observation had little impact on the OEP impasse because
existing methods for determining exchange-correlation
potentials from densities (see, for instance, Refs. [32-36])
face the same basis-set artifacts [37] and numerical chal-
lenges [38] as attempts to solve the OEP equation.

In this work, we devise a practical, artifact-free proce-
dure which allows one to compute the HFXC potential
efficiently for any atom or molecule. Then we use our
method to show, on a variety of systems, that HFXC
potentials are not just close but practically indistinguish-
able from OEPs. The significance of our approach is that
it has the same reliability and computational cost as the
KLI, LHF, and BJ schemes, but its accuracy is vastly
superior.

The proposed method originated with our observation
that the quantity (7HF — 7)/p, where 7 and 71 are the
Kohn-Sham and HF kinetic energy densities, reproduces
that part of atomic shell structure of exact-exchange poten-
tials which is missing in the KLI and LHF approximations.
While searching for a rigorous explanation, we realized
that we were dealing with the HFXC potential and arrived
at the following argument.

Consider the HF description of a closed-shell N-electron
system. The exchange energy of this system is

| far [,
4 [r —r/|
where yHF(r, ') = YV | #HF(r)pHF(r/) is the spinless
reduced density matrix and ¢!t is the spatial part of the
ith canonical HF spin orbital. The HF electron density is
given by p''f(r) = 3V |¢HF(r)|>. The orbitals ¢!F are
the lowest-eigenvalue solutions of the HF equations
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where v(r) is the external potential (e.g., the potential of T 1V HE 7
the nuclei), vy(r) = [ p"F(r')|r — /| 'dr’ is the Hartree o 2 P tvtoytuoge =1 (10)

(electrostatic) potential of pHF(r), and K is the Fock
exchange operator defined by
S EHF 1 [ yH(r, )
K HF — - _ HF (}./ d 3
o (r) = 5¢HF*() 2 ) = |¢(1’)1' (3)
Let us multiply Eq. (2) by ¢!, sum over i from 1 to N,
and divide through by p''F. The result is

7_HF
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N
—F 2. €T (@)
i=1

where 7HE(r) = —(1/2) XY | o1 (r)V2p!F(r) is the
Laplacian form of the HF kinetic energy density and

HF ]2
ViF(r) = — HF(r) / 2w ol 5)

Ir —r'|

is the Slater potential (the orbital-averaged K operator)
[39] built from the HF orbitals. The quantity on the right-
hand side of Eq. (4) is known as the HF average local
ionization energy [40]

1 N
IMF(r) = ——— ) €lfF|ptF(r)|2 6
Note that 7HF = 7HF — (1/4)V2pHF | where
| XN
) =2 Y IV mP (7
i=1

is the positive-definite form of the HF kinetic energy
density. In practical calculations, it is much better to deal
with 7HF than with 7 because the former is always finite,
whereas the latter becomes infinite at the nuclei. With these
definitions we rewrite Eq. (4) as
AHE | Y2 HF
F—Zp—;+v+vH+v?F=I—HF. (8)
Now, let us pose the following problem: Find the multi-
plicative exchange-correlation potential of the Kohn-Sham
scheme which generates the same electron density as the
HF method. This HFXC potential, v}5(r), is defined by the
Kohn-Sham equations

[57 + v + v + 0 [ o) = i, ©)

where v and vy are the same as in Eq. (2) and the
eigenfunctions ¢; are such that p(r) =YV  |¢,(r)|* =
p"F(r). An important point here is that the equality p =
p'F does not imply that ¢p; = ¢!F. In fact, the canonical
orbitals ¢; and ¢!F are known to be slightly different [28].
To find v}E(r), we perform on Eq. (9) the same manipu-
lations that led from Eq. (2) to Eq. (8) and arrive at

where 7(r) = (1/2) ¥, [V,(r)|? is the positive-definite
Kohn-Sham kinetic energy density and

RN IR <IN
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is the Kohn-Sham average local ionization energy. Finally,
we subtract Eq. (8) from Eq. (10) and write

O]
PO )’

where p = p''F, but 7 # 7HF and 1 # I''F.

Equation (12) is the key result of this work. It gives the
HFXC potential exactly (in a complete basis). Analogous
but less practical expressions for vilf. were presented
earlier in Refs. [41-43].

We propose to treat Eq. (12) as the definition of a model
Kohn-Sham potential for exact exchange. To turn this
definition into a practical method we observe that I and 7
are determined by viIf and hence are initially unknown.
Therefore, Eq. (12) has to be solved iteratively. The algo-
rithm we suggest is as follows.

(1) Perform a HF calculation on the system of interest

and construct ptlf, viIF, 7HF and [HF,

(2) Choose an initial guess for the occupied Kohn-Sham
orbitals {¢;} and their eigenvalues {¢;} (e.g., HF
orbitals and orbital energies).

(3) Shift all €; simultaneously to satisfy the condition
ey = €\F. This is needed to ensure that v% retains
the correct —1/r asymptotic behavior of v}

(4) Construct vif by substituting the current {(;S } and
{€;} into Eq. (12). To facilitate convergence, we
found it essential to compute the terms I and 7/p
using the density p = 3 | |¢,|? rather than pHF.

(5) Solve the Kohn-Sham equations (9) using the
current v, This gives a new set of {¢;} and {e;}.

(6) Return to step (3). Iterate until viE is self-
consistent, i.e., until {¢;} and {¢;} on input and
output agree within a desired threshold.

For spin-polarized systems, there will be two HFXC
potentials (spin-up and spin-down) and hence two sets
of all quantities except v and vy. The entire scheme
described above was implemented in GAUSSIAN 09 [44].

The most computationally intensive step in the HFXC
approach, as in the KLI, LHF, BJ, and related approxima-
tions, is the construction of the Slater potential. It helps that
in our method the Slater potential has to be computed only
once (at the start of iterations). To eliminate every possible
source of errors unrelated to the HFXC approximation,
here we constructed v (r) by using Eq. (5). For routine
applications, we recommend resolution-of-the-identity
techniques or the method of Ref. [45].

Vi (r) = viF(r) + I(r) — MF(r) + = (12)
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FIG. 1 (color online). OEPs and HFXC potentials are visually
indistinguishable. The same excellent agreement was observed
for all atoms where comparison with OEPs was made.

To assess the quality of HFXC potentials produced by
our method we compared them to the exact (numerical)
OEPs, some of the best existing OEP approximations (KLI,
ELP = LHF = CEDA, and BJ), and finite-basis-set OEPs
obtained by the Wu-Yang OEP (WY-OEP) method [46].
The OEP and KLI results were taken from the work of
Engel and co-workers [47-49] (for spherical atoms) and
from Makmal et al. [50] (for molecules); these are exact
fully numerical solutions of the OEP and KLI equations.
The BJ, ELP, and WY-OEP results were obtained earlier
by one of the authors [51]. To simulate the basis-set limit
in the HFXC, BJ, ELP, and WY-OEP calculations we
employed the large universal Gaussian basis set (UGBS)
of Ref. [52] for atoms and UGBS1P (UGBS augmented
with one set of polarization functions for each exponent)
for molecules. The accuracy of the UGBS is such that total
atomic HF energies computed in this basis are converged to
7 significant figures with respect to the basis-set limit [52].

In all cases where the UGBS (UGBS1P) was used, we
found that HFXC potentials are virtually indistinguishable
from exact OEPs (Figs. 1 and 2) and are dramatically better
as approximations to OEPs than the KLI and BJ models
(Fig. 2). Note that the performance of the LHF approxi-
mation is very similar to that of the KLI [16] scheme, so the
LHF or ELP or CEDA curves (not shown in Fig. 2) would
be almost superimposed with the KLI potentials. The
excellent agreement between HFXC potentials and exact
OEPs suggests that the ‘“‘correlation” part of a HFXC
potential is negligibly small.

For quantitative comparison, we took the self-consistent
Kohn-Sham orbitals generated by HFXC and other poten-
tials and calculated the conventional total exchange-only
energy, E_.,,, which is defined as the HF total energy
expression in terms of Kohn-Sham orbitals. Table I shows
that the KLI, ELP, and BJ potentials produce E.,, values
noticeably above the exact OEP energies. By contrast,
conventional energies obtained from HFXC potentials are
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FIG. 2 (color online). HFXC potentials are perfect representa-
tions of OEPs, unlike KLI and BJ potentials. The potentials for
the BH molecule are shown along the internuclear axis.

within 0.1 mE;, of the OEP benchmarks for most atoms—
closer than E,, values from WY-OEPs.

A more stringent quality test [51] for OEP approxima-
tions is the virial energy discrepancy, A, = Eyi;y — Econvs
where E;, is the total energy with the exchange contribu-
tion obtained by the Levy-Perdew virial relation [53],

Eyr = f v ®BpE) + r-Vp)ldr.  (13)

For exact OEPs, A,;, = 0 [54]. Table I shows that virial
energy discrepancies for HFXC potentials do not exceed a
few mE,, that is, are three orders of magnitude smaller than
for the LHF, ELP, and BJ approximations—as small as for
WY-OEPs. These discrepancies are expected to be even
smaller in the basis-set limit. (The numerical OEPs have
A, values of the order of a few wE;, [49].)

Recall that to solve the OEP integral equation by the
WY method one needs two sets of basis functions: a one-
electron basis for the orbitals and an auxiliary basis for
the OEP. The two sets must be ““balanced” with respect to
each other; otherwise, the resulting potential will be either
suboptimal or highly oscillatory [6,8-10]. By employing
the same large basis set in both roles, one can usually
obtain OEPs that are smooth and correct everywhere
except near the nucleus (the left-hand panel in Fig. 3).
However, the single-basis trick does not work for small
and medium-sized one-electron basis sets such as 6-31G
and cc-pVQZ, for which a suitable auxiliary basis can be
found only in an ad hoc manner with considerable effort
and some arbitrariness [8—10]. Such problems do not exist
in our method, where we automatically obtain a smooth
HFXC potential for any one-electron basis (the right panel
in Fig. 3). Since OEPs and HFXC potentials are nearly
identical in the basis-set limit, one can even operationally
define a finite-basis-set OEP (a fundamentally ambiguous
quantity [6]) as the corresponding HFXC potential.
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TABLE I

Total ground-state energies of 12 representative atoms obtained with various exchange potentials. The numerical OEP and

KLI results are from Refs. [47—49]. All other values were computed using a large Gaussian basis set (UGBS).

Econv - EOEP (units of mEh)

Eyir — Econy (units of mEy)

Atom Eogp (units of E;)  KLI  ELP* BJ WY-OEP HFXC KLI ELP* BJ WY-OEP HFXC
Li —7.43250 0.06  0.08 1.20 0.00 0.00 —5.28 4.61 50.45 —0.01 —0.04
Be —14.57243 015 015 0.75 0.01 —0.01 —21.20 13.85 31.68 0.07 —0.10
N —54.40340 036 034 414 0.01 0.00 24.74 78.47 250.56 —0.04 —0.21
Ne —128.54541 058 057 9.59 0.02 0.01 155.62 197.51 781.68 —0.05 —0.14
Na —161.85664 073 073 771 0.02 0.00 183.10 231.84 805.90 0.22 —0.28
Mg —199.61158 087 0.87 5.86 0.02 0.00 182.26 267.70 799.35 —0.64 —0.26
P —340.71500 128 1.28 3.99 0.02 —0.03 144.86 376.08 904.12 1.21 —1.84
Ar —526.81222 1.74  1.83 3.36 0.09 —0.07 124.68 512.68 1182.26 2.54 —4.08
Ca —676.75193 223 198 3.58 —0.03 —0.13 14.94 59773 112691 —2.49 —5.86
Zn —1777.83436 365 305 1040 —0.07 —0.07 1047.87 123861 2130.22 —1.21 —5.93
Kr —2752.04295 318 344 6.52 0.26 —0.07 1468.11 165732 3128.48 7.85 —7.43
Cd —5465.11441 6.04  5.58 6.46 0.92 —0.26 1883.92 2374.14 361748 —4.25 —6.99
m.a.v.” 1.74 1.66 530 0.12 0.05 438.0 629.2 1234.1 1.76 2.76

“The ELP method is equivalent to the LHF and CEDA schemes with frozen HF orbitals.

®Mean absolute value.

The reason the HFXC scheme is very robust is because the
potential v4IE is built up directly as a sum of commensurate,
well-behaved terms. Apart from being a tool for generating
approximate OEPs, the HFXC method can be used to deter-
mine Kohn-Sham potentials from HF densities, provided that
the HF and Kohn-Sham orbitals are expanded in a complete
(in practice, very large) basis or represented on a dense grid.
In Kohn-Sham calculations using a finite basis set, however,
the potential given by Eq. (12) reproduces the target
p"F(r) only approximately because Eq. (9) and its finite-
dimensional matrix representation are not equivalent [55].

We can also identify the reason why HFXC potentials
are much closer to OEPs than KLI, LHF, and related
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FIG. 3 (color online). WY-OEPs and HFXC potentials
obtained with small (6-31G), intermediate (cc-pVQZ), and large
(UGBS) basis sets as approximations to the exact (numerical)
OEP. The HFXC/UGBS curve is right on top of the OEP.

approximations. This happens because in our derivation
we did not assume that ¢; = ¢!t for all i = N. If, for the
sake of argument, we make this assumption in Eq. (12), we
immediately obtain a different potential,

N
xcl®) = o) + s Sle — ISR, (14)
i=1

which was introduced and discussed by Nagy [42] (with ¢;
in place of ¢!F) as an approximate equivalent of the KLI
potential. The difference between HF and OEP orbitals
may be small, but it gives rise to the crucial (7'F — 7)/p
term responsible for the atomic shell structure of the OEP.
It follows that the KLI and LHF approximations would be
greatly improved simply by including this term.

In conclusion, we have shown (a) how to construct
HFXC potentials (i.e., model exchange-correlation poten-
tials yielding HF densities in the basis-set limit) at the
computational cost of the KLI, LHF, and BJ approxima-
tions, and (b) that HFXC potentials are nearly exact
approximations to exchange-only OEPs, much better than
the KLI, LHF, BJ, and related models. The advantage of
approximating OEPs with HFXC potentials is that the
HFXC method completely avoids the OEP equation, and
so is free from numerical difficulties and basis-set artifacts
that beset OEP techniques.

HFXC potentials obtained in finite basis sets exhibit no
spurious oscillations and, for all intents and purposes, may
be treated as OEPs. In this sense, the HFXC scheme solves
the long-standing problem of unambiguous ‘“‘black-box”
construction of elusive finite-basis-set OEPs. We anticipate
that our approach will be widely embraced as a practical
substitute for OEP methods and as a superior alternative to
existing model potentials for exact exchange.
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Finally, we wish to remark that our approach can be
generalized to any orbital-dependent exchange-correlation
functional. One simply needs to start with the corres-
ponding energy expression E[{¢;}] instead of EF and
modify appropriately all the steps in the derivation. For
7-dependent functionals and hybrids (mixtures of exact
exchange and semilocal approximations), this scheme is
expected to produce even more accurate approximations to
SE[{¢;}]/ 8 p than for the exact-exchange functional itself.
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