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Macroscopic parameters as well as precise information on the random force characterizing the

Langevin-type description of the nuclear fusion process around the Coulomb barrier are extracted from

the microscopic dynamics of individual nucleons by exploiting the numerical simulation of the improved

quantum molecular dynamics. It turns out that the dissipation dynamics of the relative motion between

two fusing nuclei is caused by a non-Gaussian distribution of the random force. We find that the friction

coefficient as well as the time correlation function of the random force takes particularly large values in a

region a little bit inside of the Coulomb barrier. A clear non-Markovian effect is observed in the time

correlation function of the random force. It is further shown that an emergent dynamics of the fusion

process can be described by the generalized Langevin equation with memory effects by appropriately

incorporating the microscopic information of individual nucleons through the random force and its time

correlation function.

DOI: 10.1103/PhysRevLett.111.012501 PACS numbers: 24.60.�k, 24.10.Lx, 25.60.Pj, 25.70.Lm

The fusion of two nuclei is one of the major nonequi-
librium processes in low energy nuclear reactions where
the fluctuation and dissipation play important roles. It is
rather difficult to describe the fusion process without sig-
nificant simplifications. Under various assumptions, sev-
eral macroscopic transport models have been introduced to
evaluate the formation of a compound nucleus in heavy-ion
fusion reactions [1,2]. However, the microscopic mecha-
nism on how two colliding nuclei fuse, especially how the
relevant kinetic energy dissipates into the intrinsic degrees
of freedom (DOF), remains a subject requiring further
research.

On the other hand, it is becoming feasible to get various
information out of microscopic numerical simulations, like
time-dependent Hartree-Fock (TDHF) theories [3–7], the
many-body correlation transport (MBCT) theory [8], the
quantum molecular dynamics (QMD) [9], the antisymme-
trized molecular dynamics [10], and the fermion molecular
dynamics [11]. The TDHF theory is mainly based on the
mean-field concept; in TDHF, fluctuations of collective
variables are considerably underestimated. Much effort
has been made to give a beyond-mean-field description
of fluctuations [12]. The n-body correlations are incorpo-
rated in the MBCT theory [8], which has only been used in
very light systems [13].

The QMD is a microscopic dynamical n-body theory
which was successfully used in intermediate-energy
heavy-ion collisions (HIC) [9]. An improved QMD
(ImQMD) has been developed in order to extend the appli-
cation of QMD to low-energy HICs near the Coulomb

barrier [14]. A series of improvements were made in the
ImQMD; in particular, by using the phase space occupation
constraint method [15], the fermionic properties of nucle-
ons are remedied, which is important for low-energy colli-
sions. Making full use of the microscopic information
provided by ImQMD simulations, in this Letter we try to
understand how the macroscopic fusion dynamics emerges
out of the microscopic one.
We focus on a simplest case of symmetric fusion process

with the impact parameter equal to zero. In this case, the
system can be divided into the left- and right-half parts
instead of a projectile and a target [16]. The relative motion
between two centers of mass (CoM) of the left and right
parts is chosen as the relevant DOF to be described by the
Langevin equation. Our analysis is limited in a stage where
the relative distance R is much larger than its width.
The one-dimensional generalized Langevin equation

with memory effects reads [17–19]

duðtÞ
dt

¼ �
Z t

�1
�ðt� t0Þuðt0Þdt0 þ 1

�
�FðtÞ � 1

�

dVðRÞ
dR

;

(1)

where uðtÞ is the relative velocity between the two parts,
�FðtÞ the random force felt by either part, � the reduced
mass of the system, �ðt� t0Þ the friction kernel, and VðRÞ
the potential for the relative motion.
In the ImQMD model [14], a trial wave function is

restricted within a parameter space frj;pjg, where rj and

pj are mean values of position and momentum operators
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of the jth nucleon which is expressed by a Gaussian wave
packet. The time evolution of the trial wave function under
an effective potential is governed by the time-dependent
variational principle [9–11]. An expectation value of the
Hamiltonian is given by using an improved Skyrme poten-
tial energy density functional. In this Letter, we concen-
trate on head-on collisions of 90Zrþ 90Zr. Ten thousand
collision events were simulated. Each simulation is started
at R ¼ R0 ¼ 30 fm and with an incident energy E ¼
195 MeV. Numerical details can be found in Refs. [20].

The potential for the relative motion is defined as

VðRÞ ¼ EtotðRÞ � EleftðRÞ � ErightðRÞ; (2)

where Etot, Eleft, and Eright represent the energy of the

system and those of the left and right parts, respectively,
each of which consists of the kinetic energy, the nuclear,
and the Coulomb potential energies. The potential VðRÞ is
shown in Figs. 1 and 3. The TDHF has also been used
to extract microscopic interaction potentials between two
nuclei [5,21] which show similar features as those from the
ImQMD simulations presented here and in Ref. [22].

The random force or the fluctuation of force in the ith
event is defined as

�FðxÞi � FiðxÞ � hFðxÞi; x ¼ t or R; (3)

where FiðxÞ �
P

A
j¼1 f

j
i ðxÞ denotes the total force acting on

the left (right) part of the system in the ith event, hFðxÞi �
ð1=nÞPn

i¼1 FiðxÞ the mean value, and fji ðxÞ the force on the
jth nucleon in the left (right) part. Here A means the
number of nucleons contained in the left (right) part and
n denotes the total number of events. In Eq. (3) and
hereafter, hQi denotes an average of Q over all events.
For low-energy collisions, the fluctuation mainly stems
from the initialization of each event in which the position
and the momentum of each particle are chosen randomly
under certain conditions. With time this initial fluctuation
propagates and is not smoothed out because in QMD a
many-body rather than a mean field problem is solved [9].
Distributions of �FðRÞ at several distances are shown

in Fig. 1. The random force at Rðt ¼ 0Þ ¼ R0 shows a
Gaussian distribution with the full width at half maximum
(FWHM) � � 0:1 MeV=fm, which could be understood
analytically as only the Coulomb field is felt by the parti-
cles. In a region far away from the barrier, e.g., R � 18 fm,
�F has a Gaussian distribution with � � 0:5 MeV=fm.
From a certain distance, R � 13:5 fm, there appears a
non-Gaussian shape, as is observed in Fig. 1. According
to the shape of the distribution of �FðRÞ, one may divide
the whole process into three regions. Region 1 represents an
approaching phase up to the touching point: the distribution
has a Gaussian form with a rather narrow width. Region 2 is
from the touching point to the barrier top: a non-Gaussian
shape appears. Region 3 is from just inside the barrier top
to the fusing phase: the distribution of �FðRÞ has again a
Gaussian shapewith � � 15 MeV=fm, which is almost two
orders of magnitude larger than that in Region 1.
To make clear what happens in Region 2, we divide the

distribution of �FðRÞ into symmetric Gaussian and asym-
metric tail parts as is shown in Fig. 2. The width of the
Gaussian part is of the same order of magnitude as that in
Region 1. The detailed structure of the random force can
be studied by examining the strength and direction of the
force felt by each nucleon. One typical event in the sym-
metric part is shown in Fig. 2(a): all nucleons are well
divided into two separated groups expressing the projectile
and the target, respectively. Moreover, each nucleon locat-
ing in the left side of each nucleus feels a force toward the
right (positive value), and that in the right side feels a force
toward the left (negative value), so as to keep a stable mean
field. The resultant force made by all nucleons in each
nucleus is almost zero. Namely, the intrinsic structure of
two fusing nuclei is kept almost unchanged, as is the width
of the random force. This situation persists in events that
belong to the symmetric Gaussian part in Region 2 and in
all those in Region 1.
A typical event in the asymmetric tail is shown in

Fig. 2(b). Nucleons are roughly divided into two groups
surrounded by solid lines. However, there appears a small

FIG. 1 (color online). Distributions of the random force
�FðRÞ. Each inset shows the potential VðRÞ with the blue dot
representing the position where the system locates. The contour
plots display the nucleon density distribution of the system.

PRL 111, 012501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 JULY 2013

012501-2



third group within the dashed line. Since a few points in the
negative (positive) force region express a set of nucleons
which escape from the left (right) nucleus, and are being
absorbed by the right (left) nucleus, a resultant force made
by these nucleons gives a large right- (left-) directed com-
ponent to the random force. These transferred nucleons
move in an average potential formed by both the projectile
and the target; they play a role to open a window.

When the two nuclei come much closer, there occur
more events that have more nucleons in the third group.
Meanwhile, the other two groups, originating from the
projectile and target, become closer to each other.
Consequently, the asymmetric tail in the distribution of
�FðRÞ becomes larger. At the border between Regions 2
and 3, it becomes very difficult to distinguish an event in
the center part of the distribution from that in the tail part
and all events are absorbed into a widely spreading
Gaussian distribution.

From the above discussions, it is concluded that the main
microscopic origin of the random force, i.e., a two orders
of magnitude enhancement of the random force, is gener-
ated by individual nucleons in the third group. These
nucleons also result in the abnormal behavior in the distri-
bution of �FðRÞ, i.e., the long tail in Region 2 and a much
larger width in Region 3 compared to Region 1.

Next let us extract information for the macroscopic
dynamics out of microscopic simulations. Assuming that
the work done by the friction force is completely converted
into the intrinsic energy EintrðRÞ, one gets the friction
coefficient �0ðRÞ from the Rayleigh formula [6,16,19],

�0ðRÞ � hFfricðRÞi
hPiR ; (4)

with FfricðRÞ � dEintrðRÞ=dR, EintrðRÞ�EtotðRÞ�EcollðRÞ,
and EcollðRÞ ¼ P2=2�þ VðRÞ. P denotes the relative
momentum between two CoMs and its mean value hPiR
at a given R is defined as

hPiR � 1

n

Xn
i¼1

PiðtiÞjftijRiðtiÞ¼Rg; (5)

where PiðtÞ and RiðtÞ are the momentum and coordinate of
the ith event at time t and the following correspondence is
used: for each event i, a time ti is chosen in such a way that
the relative distance takes a given value R, i.e., RiðtiÞ ¼ R.
An R-dependent correlation function is defined as

h�FðRÞ�FðRÞi � 1

n

Xn
i¼1

�FiðtiÞ�FiðtiÞjftijRiðtiÞ¼Rg: (6)

Figure 3 shows the correlation function h�FðRÞ�FðRÞi
and the friction coefficient �0ðRÞ, which play decisive roles
in the macroscopic description of dissipation phenomena.
As is seen from Fig. 3, h�FðRÞ�FðRÞi and �0ðRÞ have
similar shapes and their peaks locate at similar R. The
friction coefficient of the fusion process induced by a
head-on collision extracted from TDHF calculations shows
similar strong peak structure. As the incident energy E
increases, the shape of the curve �0ðRÞ � R may change.
When E is high enough, �0ðRÞ increases gradually with
decreasing R [6,16,23].
To explore more deeply the dynamical relation between

the microscopic motion of individual nucleons and the
macroscopic dissipative motion, in Fig. 4 we show the
time correlation function of the random force �ðR; �Þ
which is defined as

�ðR; �Þ � 1

n

Xn
i¼1

�FiðtiÞ�Fiðti � �ÞjftijRðtiÞ¼Rg: (7)

FIG. 3 (color online). The correlation function
h�FðRÞ�FðRÞitot (red dots, in ðMeV=fmÞ2) and the friction
coefficient �0ðRÞ (blue squares, in 0:001c=fm). The grey line
shows the potential VðRÞ. Pink diamonds represent
h�FðRÞ�FðRÞisym calculated by eliminating events in the asym-
metric tail.

FIG. 2 (color online). Distribution of the random force �FðRÞ
at R ¼ 13:5 fm, which is divided into the symmetric Gaussian
(dark blue) and asymmetric tail (light blue) parts. Two typical
events are shown in the inset: The abscissa and the ordinate
express relative position z of each nucleon and the force it feels
in the z direction.
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In Fig. 4 one clearly finds the non-Markovian effect.
Especially when R ¼ 12� 10 fm, it is important to take
account of memory effects generated by the microscopic
motion of nucleons when one tries to properly evaluates
macroscopic effects of the dissipation. Starting from the
generalized Langevin equation (1) with memory effects,
one gets a generalized fluctuation-dissipation (GFD)
relation h�FðtÞ�Fðt� t0Þi ¼ �T�ðt� t0Þ which properly
takes account of the time correlation of the random force.
There are many ways to define the temperature for com-
pound nuclei (see, e.g., Ref. [24]). Here we define an
effective temperature for colliding systems by applying
the GFD relation,

Tnon�MarkovðRÞ ¼ 1

��0ðRÞ
Z 1

0
d��ðR; �Þ: (8)

The effective temperature Ttot
non�Markov as well as the one

from the Markovian approximation Ttot
Markov are shown in

Fig. 5.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eintr=a

p
representing the temperature of a com-

pound nucleus in the Fermi gas model is also shown as a
reference. Although Ttot

non�Markov and Ttot
Markov differ by one

order of magnitude, they both show a peak around the
range where the asymmetric tail appears in the distribution
of �FðRÞ. These peaks are related to the fact that the
relative motion for events in the asymmetric tail part of
the �FðRÞ distribution is strongly affected by a few trans-
ferred nucleons between two fusing nuclei, i.e., by those
in the third group of Fig. 2(b). The macroscopic dynamics
of the relative motion described by the one-dimensional
Langevin equation (1) is not appropriate in Region 2.
In other words, the appearance of the non-Gaussian
distributed random force indicates a necessity of introduc-
ing a new macroscopic DOF. Whether or not this new
DOF may be related to the formation of a neck is an
open question [25].

After eliminating the events in the asymmetric tail in
the distribution of �FðRÞ, one gets effective temperatures
Tsym
non�Markov and Tsym

Markov; which are depicted in Fig. 5.

The correlation function h�FðRÞ�FðRÞi after eliminating

the asymmetric tail is also shown in Fig. 3. Tsym
non�Markov

shows a consistent feature with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eintr=a

p
in Region 3.

While T
sym
Markov is by an order of magnitude smaller than

T
sym
non�Markov. That is, the amount of energy dissipated from

the relative motion into the intrinsic DOFs could be more
properly described by the generalized Langevin equation
with memory effects.
When the incident energy E is far above the Coulomb

barrier, the non-Gaussian fluctuation and the non-
Markovian effect become less pronounced [23]. It will be
interesting to study the dependence of the non-Gaussian
fluctuation and the non-Markovian effect on E as well
as the impact parameter and the reaction system. The
spin-orbit coupling is important to properly reproduce the
dissipation in heavy-ion fusion reactions [26]; e.g., the so-
called ‘‘fusion-window’’ problem was solved in the first
quantitative TDHF calculations with the inclusion of the
spin-orbit interaction [26]. One may expect more dissipa-
tions if the spin-orbit coupling effects are included in the
ImQMD simulations.
In summary, we have discussed the generalized

Langevin dynamics with memory effects by using both
the macroscopic and microscopic information extracted
from ImQMD simulations for the fusion process around
the Coulomb barrier. It is found that the dissipation dy-
namics of the relative motion between two fusing nuclei is
associated with non-Gaussian distributions of the random
force. In addition to the macroscopic information like the
friction coefficient and the potential for the relative motion,
the microscopic information of the random force as well
as of its time correlation function and a proper treatment
of the non-Markovian (memory) effect in the Langevin
dynamics are decisive for the dynamics of emergence in
the nuclear dissipative fusion motion.

FIG. 4 (color online). Time correlation function �ðR; �Þ (7).

FIG. 5 (color online). Effective temperature in the Markovian
limit (a) and the non-Markovian one (b). The blue line showsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eintr=a

p
with a ¼ Atotal=4 MeV�1.
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