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A thermal equilibrium state of a quantum many-body system can be represented by a typical pure state,

which we call a thermal pure quantum (TPQ) state. We construct the canonical TPQ state, which

corresponds to the canonical ensemble of the conventional statistical mechanics. It is related to the

microcanonical TPQ state, which corresponds to the microcanonical ensemble, by simple analytic

transformations. Both TPQ states give identical thermodynamic results, if both ensembles do, in the

thermodynamic limit. The TPQ states corresponding to other ensembles can also be constructed. We have

thus established the TPQ formulation of statistical mechanics, according to which all quantities of

statistical-mechanical interest are obtained from a single realization of any TPQ state. We also show that it

has great advantages in practical applications. As an illustration, we study the spin-1=2 kagome

Heisenberg antiferromagnet.
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Statistical mechanics is conventionally described by the
ensemble formulation, in which an equilibrium state is rep-
resented by a mixed quantum state. Although its basic prin-
ciples are introduced in the microcanonical ensemble, one
can derive other ensembles, such as the canonical ensemble.
This makes statistical mechanics powerful and practical
because for most applications the (grand) canonical
ensemble is more convenient than the microcanonical one.

On the other hand, recent studies have shown that almost
all pure quantum states in a specified energy shell represent
an equilibrium state [1–5]. Generalizing this fact, we have
defined a thermal pure quantum (TPQ) state as a pure
quantum state that represents an equilibrium state and
proposed a new formulation of statistical mechanics based
on the TPQ state [6]. Since the TPQ state proposed there
corresponds to the microcanonical ensemble, we here call
it the microcanonical TPQ state. Then, natural questions
arise: Are there TPQ states that correspond to other ensem-
bles? How are they related to each other?

In this Letter, we construct a new type of TPQ state, the
canonical TPQ state, which corresponds to the canonical
ensemble. We show that it is related to the microcanonical
TPQ state by simple analytic transformations. The TPQ
states corresponding to other ensembles, such as the grand
canonical ensemble, can also be constructed in a similar
manner. These results establish the new formulation of
statistical mechanics, which enables one to obtain all
quantities of statistical-mechanical interest from a single
realization of a TPQ state. This formulation is not only
interesting as fundamental physics but also advantageous
in practical applications because one needs only to
construct a single pure state by just multiplying the
Hamiltonian matrix to a random vector. The canonical
TPQ state is particularly advantageous at low but finite
temperature, whereas the microcanonical one is suitable
for first-order phase transitions. As an illustration, we study

the spin-1=2 kagome Heisenberg antiferromagnet (KHA)
using the canonical TPQ state.
Setup and definition.—We consider a quantum system

composed of N sites or particles. By using an effective
model in the energy scale of interest [7], we describe the
system with a Hilbert space H N of dimension �N , where
� ¼ �ð1Þ [8] (� ¼ 2 for spin-1=2 systems). To take the

thermodynamic limit, we use quantities per site, ĥ � Ĥ=N

and u � E=N, where Ĥ denotes the Hamiltonian and E the
energy. We do not write explicitly variables other than u
and N, such as a magnetic field. We assume that the
ensemble formulation gives correct results, which are con-
sistent with thermodynamics in the thermodynamic limit.
(Here, the term ‘‘thermodynamics’’ is used in the sense of
textbooks [9,10].) This implies, e.g., that the entropy den-
sity sðuÞ is a concave function and that the equivalence of
ensembles holds. A huge class of systems, excluding some
models with long-range interactions [10,11], satisfy this
condition.
Statistical mechanics treats macroscopic variables,

which include ‘‘mechanical’’ and ‘‘genuine thermody-
namic’’ ones. Mechanical variables, such as energy and
spin-spin correlation functions, are the observables that are
low-degree polynomials [i.e., their degree � m, where
m ¼ oðNÞ] of local operators. In order to exclude foolish

operators (such asNNĤ), we assume that every mechanical

variable Â is normalized such that k Â k� KNm, where K

is a constant independent of Â and N. By contrast, genuine
thermodynamic variables, such as temperature and ther-
modynamic functions, cannot be represented as such op-
erators. All genuine thermodynamic variables can be
derived from the entropy function [9,10].
We have defined a TPQ state for the case where it has a

random variable(s), as follows [6]. A state jc i (2H N) is

called a TPQ state if hÂicN!P hÂiensN uniformly for every
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mechanical variable Â as N ! 1. Here, hÂicN �
hc jÂjc i=hc jc i, h�iensN is the ensemble average, and

!P denotes convergence in probability. That is, for an
arbitrary positive number �, there exists a function ��ðNÞ
that vanishes in the thermodynamic limit and satisfies

PðjhÂicN �hÂiensN j��Þ���ðNÞ for every mechanical vari-

able Â. [PðxÞ denotes the probability of event x.]
This means that for sufficiently large N, just a single
realization of jc i gives the equilibrium values of all me-
chanical variables. Note that jc i is never obtained by
‘‘purification’’ of the density operator of the ensemble
formulation, because jc i is not a vector in an enlarged
Hilbert space but a vector in H N .

Canonical TPQ state.—We have previously constructed
the microcanonical TPQ state, which is specified by (u, N)
(i.e., independent variables are u,N) [6]. We now construct
the canonical TPQ state, which is specified by (�, N), for
finite inverse temperature � ¼ 1=T.

We take an arbitrary orthonormal basis of H N , fjiigi,
which can be a trivial one such as a set of product states.
We also take random complex numbers fcigi, which are
drawn uniformly from the unit sphere

P
ijcij2 ¼ 1. Then,

jc 0i � P
icijii is a random vector in H N . Note that this

construction of jc 0i is independent of the choice of fjiigi.
We will show that

j�;Ni � exp½�N�ĥ=2�jc 0i (1)

is the (unnormalized) canonical TPQ state specified by
(�, N). We start with the rather obvious equality,

h�;NjÂj�;Ni=h�;Nj�;Ni ¼ hÂiens�;N; (2)

where � � � denotes the random average, hÂiens�;N �
Tr½e�N�ĥÂ�=Zð�;NÞ, and Zð�;NÞ � Tre�N�ĥ. To inves-

tigate how fast hÂiTPQ�;N � h�;NjÂj�;Ni=h�;Nj�;Ni
converges to this value, we evaluate DNðAÞ2�
ðhÂiTPQ�;N �hÂiens�;NÞ2 with the help of formulas in Ref. [12].

Dropping smaller-order terms, we find [13]

DNðAÞ2 � hð�ÂÞ2iens2�;NþðhAiens2�;N�hAiens�;NÞ2
exp½2N�ffð1=2�;NÞ�fð1=�;NÞg� ; (3)

where hð�ÂÞ2iens�;N � hðÂ� hAiens�;NÞ2iens�;N, and fðT;NÞ is the
free energy density. We here use (T;N) instead of (T, N) to
indicate that fðT;NÞ approaches the N-independent one,

fðTÞ, in the thermodynamic limit. Since hð�ÂÞ2iens2�;Nþ
ðhAiens2�;N�hAiens�;NÞ2�5kÂk2�5K2N2m, and fð1=2�; NÞ�
fð1=�; NÞ ¼ fð1=2�Þ � fð1=�Þ þ oð1Þ ¼ �ð1Þ þ oð1Þ
at finite � (because the entropy density s ¼ �@f=@T ¼
�ð1Þ), we find DNðAÞ2 � N2m=e�ðNÞ, which becomes
exponentially small with increasing N.

On the other hand, a generalized Markov’s inequality
yields, for arbitrary � > 0,

P ðjhÂiTPQ�;N � hÂiens�;Nj � �Þ � DNðAÞ2=�2: (4)

The right-hand side� N2m=�2e�ðNÞ, which vanishes expo-
nentially fast with increasing N, for every mechanical

variable Â. Therefore, hÂiTPQ�;N !P hÂiens�;N uniformly, which

shows that j�;Ni is the canonical TPQ state.
Genuine thermodynamic variables.—We now show that

j�;Ni also gives genuine thermodynamic variables cor-
rectly. In the ensemble formulation, the partition function
Zð�;NÞ gives f ¼ �ð1=�NÞ lnZ. Similarly, in our formu-
lation the squared norm of j�;Ni gives f as [13]

h�;Nj�;Ni ¼ Zð�;NÞ=�N ¼ expð�N�fÞ=�N; (5)

Pðjh�;Nj�;Ni=h�;Nj�;Ni � 1j � �Þ
� 1=�2 exp½2N�ffð1=2�;NÞ � fð1=�;NÞg�: (6)

Therefore, h�;Nj�;Ni !P Zð�;NÞ=�N , and a single
realization of the canonical TPQ state gives f, with expo-
nentially small probability of error, by

� �fð1=�;NÞ ¼ 1

N
lnh�;Nj�;Ni þ ln�: (7)

All genuine thermodynamic variables can be calculated
from f [14]. Furthermore, using f obtained from this
formula, one can estimate the upper bounds of errors
from formulas (3), (4), and (6). In this sense, our formulas
are almost self-validating ones. This property is particu-
larly useful in practical applications because one can con-
firm the validity of the results without comparing them
with results of other methods.
Note that the canonical ensemble and the canonical TPQ

state give the correct results only when N is large enough.
For a system with small N, which interacts with a heat
bath, neither gives the correct results in general, because
interaction with the bath is non-negligible for small N. To
obtain the correct results for smallN, one must apply either
theory to a large system that includes the small system.
Nevertheless, one might want results of the canonical
ensemble even for small N. In such a case, one can use
Eqs. (2) and (5) by averaging over many realizations,
because they exactly hold for all N.
We can show similar results for the unnormalized micro-

canonical TPQ state,

jki � ðl� ĥÞkjc 0i ðk ¼ 0; 1; 2; . . .Þ; (8)

which represents the equilibrium state at the energy density

uk ¼ hkjĥjki=hkjki. Here, l is an arbitrary constant such

that l � maxfeigenvalue of ĥg [6]. The squared norm
Qk � hkjki gives the entropy density sðu;NÞ by [15]

sðuk;NÞ ¼ 1

N
lnQk � 2k

N
lnðl� ukÞ þ ln�þOð1=NÞ:

(9)
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This formula gives s more directly than the formula of
Ref. [6], in which s was obtained by integrating �.

Equivalence and analytic relations.—In the ensemble
formulation, the equivalence of ensembles is important.
Also in our formulation, the canonical and the micro-
canonical TPQ states are equivalent. In fact, Eqs. (6) and
(9) show that both TPQ states give the correct thermody-
namic functions in the thermodynamic limit. Since
�fð1=�Þ (¼�fð1=�;1Þ) and sðuÞ (¼sðu;1Þ) are equiva-
lent (because they are related by the Legendre transforma-
tion), so are both TPQ states.

We can go one step further. These TPQ states are by
themselves related by simple analytic transformations [13].
To see this, we expand the exponential function of

eN�l=2j�;Ni ¼ eN�ðl�ĥÞ=2jc 0i as

eN�l=2j�;Ni ¼ X1
k¼0

ðN�=2Þk
k!

jki ¼ X1
k¼0

Rkjc ki: (10)

Here, jc ki � ð1= ffiffiffiffiffiffi
Qk

p Þjki is the normalized micro-
canonical TPQ state [6], and Rk � ðN�=2Þk ffiffiffiffiffiffi

Qk

p
=k! We

can prove that the coefficient Rk takes the maximum at k�
(¼�ðNÞ) such that

� ¼ �ðu�k� ;NÞ þOð1=NÞ; (11)

where u�k was defined in Ref. [6], and�ðu;NÞ is the inverse
temperature of the equilibrium state specified by (u, N),

i.e., �ðu;NÞ � @sðu;NÞ=@u. We can show that u�k� ¼
hc k� jĥjc k� i þOð1=NÞ. We can also prove that Rk van-
ishes exponentially fast for jk� k�j � �ðNÞ. That is, Rk

has a sharp peak at k� and relevant terms in the sum are
localized in the range jk� k�j ¼ oðNÞ. This means that
j�;Ni is almost composed of jc ki’s whose temperature is
close to 1=�. Such a natural and nice property is obtained

because we have expanded j�;Ni in powers not of ĥ but of

(l� ĥ). Moreover, we can prove that the sum is uniformly
convergent on any finite interval of �. That is, if one fixes
arbitrarily the upper bound �max (> 0) of � depending on
one’s purposes, then the sum is uniformly convergent for
all � such that 0 � � � �max. Because of this good con-
vergence, we can obtain inversely the microcanonical TPQ
state from the canonical one, e.g., by

jki ¼
�
2

N

�
k @k

@�k
eN�l=2j�;Nij�¼0: (12)

Various representations of equilibrium state.—The ca-

nonical density operator e�N�ĥ=Z is invariant under time
evolution. j�;Ni is also invariant in the sense that it
traverses various realizations of the same canonical TPQ
state, as can be seen by taking the energy eigenstates as the
arbitrary basis fjiigi used in the construction of jc 0i. Since
almost all realizations of the TPQ state give identical
results for macroscopic variables, as proved above, the
TPQ state is macroscopically stationary in consistent

with thermodynamics. Moreover, according to experience,
any quantum state representing an equilibrium state should
be stable against weak external perturbations. We can show
using the results of Refs. [16,17] that the TPQ states [with
an appropriate symmetry-breaking field(s)] do have such
stability. These facts support that an equilibrium state can

be represented by various microstates, including e�N�ĥ=Z
and j�;Ni.
Practical formulas.—It is practical to calculate j�;Ni

from jc ki’s through Eq. (10), because the microcanonical
TPQ states jc 1i; jc 2i; . . . ; jc ki can be obtained iteratively
by simply multiplying (l� ĥ) with jc 0i k times [6]. Since
Rk has a sharp peak at k� [given by Eq. (11)], one can
terminate the sum at a finite number kterm. It is sufficient to
take kterm such that kterm � k�max ¼ �ðNÞ, where k�max is k

�
corresponding to �max. Since we can show that k� ¼ �ðNÞ
for any finite �, k�max ¼ �ðNÞ. Hence, kterm ¼ �ðNÞ. In
this way, one can obtain j�;Ni by multiplying (l� ĥ)
repeatedly �ðNÞ times.
All macroscopic variables can be calculated from the

obtained j�;Ni. One can also calculate them without
obtaining j�;Ni explicitly. To see this, we note that all

macroscopic variables can be obtained from h�;NjÂj�;Ni
and h�;Nj�;Ni, as shown by formulas (4) and (7). Since

the latter is included in the former as the case of Â ¼ 1̂, we

consider the former. From Eq. (10), h�;NjÂj�;Ni ¼
e�N�l

P
k;k0 ½ðN�=2Þkþk0=k!k0!�hkjÂjk0i. For the special

case where ½Â; ĥ� ¼ 0, this reduces to

h�;NjÂj�;Ni ¼ fÂg0�;N; (13)

where fÂg0�;N �P
k½ðN�Þ2k=ð2kÞ!�hkjÂjkiþP

k½ðN�Þ2kþ1=

ð2kþ1Þ!�hkjÂjkþ1i. Even when ½Â; ĥ� � 0, we can
prove that Eq. (13) holds extremely well. Specifically, for

fÂgTPQ�;N � fÂg0�;N=f1̂g0�;N and ENðAÞ2�ðfÂgTPQ�;N �hÂiens�;NÞ2,
we have

P ðjfÂgTPQ�;N � hÂiens�;Nj � �Þ � ENðAÞ2=�2; (14)

ENðAÞ2 �
hð�ÂÞ2iens�;N

�2 exp½N�ffð0;NÞ � fð1=�;NÞg� ; (15)

which show that fÂgTPQ�;N !P hÂiens�;N exponentially fast and

uniformly. Formula (13) is useful because one needs only

to calculate hkjÂjki and hkjÂjkþ 1i for all k � kterm to
obtain the results for all � � �max.
The TPQ formulation of statistical mechanics.—It is

straightforward to extend the above theory to the TPQ
states corresponding to other ensembles, such as the grand
canonical ensemble. We have thus established the new
formulation of statistical mechanics, in the same level as
the ensemble formulation. It is summarized, for the micro-
canonical and canonical TPQ states, as follows. Depending
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on the choice of independent variables, (E, N) or (�, N),
one can use either state, because they give identical ther-
modynamic results. A single realization of either TPQ state
suffices for evaluating all quantities of statistical-
mechanical interest. Moreover, one can estimate the upper
bounds of errors (which vanish asN ! 1) by formulas (3),
(4), (6), (14), and (15). The microcanonical and canonical
TPQ states are transformed to each other by simple ana-
lytic relations, Eqs. (10) and (12). Hence, getting either one
implies getting both. Using this fact, we have developed a
practical formula (13).

Since the TPQ formulation is much different from the
ensemble formulation, it will lead to deeper understanding
of macroscopic quantum systems. It is also unique and
advantageous as a numerical method. (i) It computes ex-
pectation values for a pure quantum state, whereas the
other methods compute those for a mixed state (such as

e�N�ĥ=Z). (ii) There is no limitation on models, i.e., it is
applicable to any spatial dimensions and to complicated
systems such as frustrated systems and fermion systems.
(iii) It is applicable to finite temperature. At finite T,
there are an exponentially large number of states in the
corresponding energy shell. This reduces accuracy of many
other methods. By contrast, our method becomes more
accurate as the number of relevant states increases, as
explicitly shown by formulas (3), (6), and (15). (iv) It is
almost self-validating because one can estimate the upper
bounds of errors from these formulas. (v) One can obtain

TPQ states by simply multiplying ĥ repeatedly�ðNÞ times
to a random vector. This is much faster, e.g., than the
numerical diagonalization (ND) of the full spectrum.
(For example, it took only a few days to calculate all
data in Fig. 1 on a personal computer.) (vi) To obtain the
results for all � � �max, only two vectors, jki and jkþ 1i,
are required to store in the computer memory. (vii) The
orthogonality, hkjk0i ¼ 0 for k � k0, is not necessary at all.
This is advantageous to large-scale computations.

Regarding the choice between the canonical and micro-
canonical TPQ states, one can use either depending on the
purpose. For example, if one is interested in a first-order
phase transition at which the specific heat c ¼ @u=@T ¼
ð@T=@uÞ�1 diverges the microcanonical one is practically
better, because TðuÞ is continuous (whereas uðTÞ is dis-
continuous) through the transition [10,18]. On the other
hand, the canonical one is better when one studies low-
temperature behavior of c, because @uðTÞ=@T gets small
(@TðuÞ=@u diverges) as c ! 0.

Application.—As an illustration, we study the KHA,
which is a frustrated two-dimensional quantum spin sys-
tem. It was suggested that c has double peaks at low
temperature [19]. However, the problem is still in dispute
due to the complexity of the frustration and the finite size
effect [19–22]. We compute c, f, and s for N ¼ 18–30,
taking kterm ¼ 2000, for which the residual is evaluated to
be less than 10�10% for T � 0:02J.

In Fig. 1 we plot c, obtained using @hĥiens�;N=@� ¼
�hðĥ� hĥiens�;NÞ2iens�;N ’ f�̂2gTPQ�;N , where �̂ � ĥ� fĥgTPQ�;N .

We have also calculated c by using the difference method

as @hĥiens�;N=@� ’ ðfĥgTPQ�þ��;N � fĥgTPQ�;N Þ=��. The differ-

ence of these two numerical results is much smaller than
the line width of the data in Fig. 1. For N ¼ 27 and 30, for
which ND has never been performed, there is not a peak
but a shoulder around T ¼ 0:1 J, although the finite size
effect may still be non-negligible.
We also estimate the error caused from the random

initial vector jc 0i by using inequality (15). In the inset
of Fig. 1 we plot f (left scale), which are calculated
from Eq. (7). Using the results for f and those for

fð�̂2 � f�̂2gTPQ�;N Þ2gTPQ�;N , we find that the (normalized) stan-

dard deviationDNð�̂2Þ=f�̂2gTPQ�;N forN ¼ 30 is less than 1%

down to T ¼ 0:1 J. The error of f itself is also estimated to
be less than 1% down to T ¼ 0:1 J. Such a small error is
attained because our method gets more accurate for larger
entropy Ns, and the KHA has relatively large s at low
temperature due to the frustration effect [21]. To see this
quantitatively for N ¼ 30, we plot s ¼ ðu� fÞ� in the
inset of Fig. 1 (right scale). At T ¼ 0:2 J there remains
45% of the total entropy ( ¼ N ln2). Such a large entropy

makes DNð�̂2Þ small.
Finally, to confirm the validity, we compute c for

N ¼ 18, for which the result of the ND is available [20].
For such a small cluster, the standard deviation estimated
from inequality (15) is about 35% at T ¼ 0:1 J. Hence, we
have used Eq. (2) for N ¼ 18 only, taking the average over
100 realizations of the TPQ state. The difference between
our results (18a), (18b) and those by the ND [20] is less
than the line width of the data in Fig. 1.
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FIG. 1 (color online). c vs T of the KHA. The shapes of
clusters of N ¼ 30, 27 and 18a, 18b are shown in the left,
right and in Ref. [20], respectively. (Inset) f and s vs T for
N ¼ 30.
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