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We present a minimal one-dimensional model of collective spin excitations in itinerant ferromagnetic

superlattices within the regime of parabolic spin-carrier dispersion. We discuss the cases of weakly and

strongly modulated magnetic profiles finding evidence of antiferromagnetic correlations for long-wave

magnons (especially significant in layered systems), with an insight into the ground state properties.

In addition, the presence of local minima in the magnonic dispersion suggests the possibility of (thermal)

excitation of spin waves with a relatively well controlled wavelength. Some of these features could be

experimentally tested in diluted magnetic semiconductor superlattices based on thin doped magnetic

layers, acting as natural interfaces between (spin)electronic and magnonic degrees of freedom.

DOI: 10.1103/PhysRevLett.110.267205 PACS numbers: 75.30.Ds, 75.50.Pp, 75.70.Cn, 75.75.�c

Introduction.—During the last decade, there has been
an increasing interest on the dynamics of collective spin
excitations (magnons or spin waves) in magnetic materials
at the nanoscale. Recent efforts demonstrated that magnons
can exhibit most of the characteristic signatures of wave
phenomena including the excitation and propagation along
wave guides, interference, reflection, refraction, diffrac-
tion, focusing, and tunneling, showing both classical and
quantum properties. These findings established the basis
of the emerging field of magnonics [1–3], the aim of which
is to exploit magnons to carry and process information,
among others. The building blocks of magnonics are mag-
netic superlattices for the design of bands that determine
the transport properties of magnons (and, specifically, band
gaps blocking magnon propagation). Most developments
have been implemented in magnetic materials as ferrites
and ferromagnetic alloys, where local magnetic moments
interact through direct exchange or dipolar coupling
depending on the length scale. Surprisingly, little attention
has been paid in this respect to itinerant ferromagnets as
diluted magnetic semiconductors (DMS) [4]. These are
magnetic materials where local magnetic moments are
coupled through itinerant spin carriers in the absence of
direct coupling, allowing the electrical control of ferro-
magnetism [5]. An example is GaMnAs, where magnetic
superlattices can be built by layering GaAs with modulated
Mn-impurity densities along the growth direction at the
nanometer scale. These structures were studied mainly in
the context of spin-carrier transport for applications in the
field of spintronics [6] as giant magnetoresistances (GMR)
by manipulating the (anti)ferromagnetic coupling between
Mn layers [7–10]. To our knowledge, spin waves in mag-
netic semiconductor superlattices were only studied in the
narrow band limit under the action of direct impurity
exchange, where carriers motion plays no role [11]. This
family of hybrid materials present a natural advantage,
acting as interfaces between (spin)electronic and magnonic

degrees of freedom. Certainly, this emerging aspect
deserves more attention.
Here, we present a first step towards the theoretical study

of collective excitations in one-dimensional (1D) magnetic
superlattices mediated by itinerant carriers. It is based on
a previous theory originally developed for the modeling
of ferromagnetism in uniformly doped DMS [12,13], here
extended for the study of periodically modulated magnetic
doping. The model accounts for dynamic correlations
between localized magnetic impurities and itinerant
carriers in small excitations from an ordered state, well
beyond mean-field and Ruderman-Kittel-Kasuya-Yosida
(RKKY) theories. We implement a path-integral formula-
tion where carriers are integrated out, obtaining an effec-
tive action for the impurity spins expanded up to the second
order in the excitations amplitude. We find a number of
spin wave modes with distinguishing features as a conse-
quence of the periodic magnetic profile, showing signa-
tures of antiferromagnetic correlations absent in uniformly
doped systems. In combination with an external magnetic
field, these could allow the thermal excitation of spin
waves of definite wavelength. We discuss the cases of
weakly and strongly modulated magnetic profiles in the
parabolic regime for carrier dispersion. This makes our
study also valid for 1D magnonic superlattices built upon
the layering of 3D systems (as, e.g., DMS superlattices).
Model.—We study a Kondo-like 1D model describing

a system of localized spins distributed periodically along
the z axis with spin density SðzÞ coupled ferromagnetically
to conduction-band electrons. This is described by the
Hamiltonian H¼HkinþHZþHex, with contributions [14]

Hkin ¼
Z

dz
X

�¼�1

ĉ y
�ðzÞ

�
p2

2m
��

�
ĉ �ðzÞ; (1)

HZ ¼
Z

dz ½g�BB � sðzÞ þ g��BB � SðzÞ�; (2)
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Hex ¼ J
Z

dz SðzÞ � sðzÞ: (3)

Here, Hkin accounts for the kinetic Hamiltonian of

conduction-band carriers [spinorial fields ĉ �ðzÞ] with
effective mass m, introducing the chemical potential �
as a reference. An external magnetic field B contributes
with a Zeeman energy HZ, Eq. (2), where we introduce

the itinerant-carrier spin density sðzÞ ¼ ð1=2ÞP��0�̂y
�ðzÞ�

���0�̂�0 ðzÞ with � the vector of Pauli matrices. The cou-
pling between itinerant carriers and local spin is modeled
by Hex, Eq. (3), with ferromagnetic coupling constant
J < 0 [15]. This model simplifies considerably when the
itinerant-carrier density nðzÞ is much smaller than the
local-spin density NðzÞ [16], in which case, we can treat
NðzÞ [and, consequently, SðzÞ] as a continuous distribution
where disorder is neglected by coarse graining. This
regime applies, among others, to bulk and nanostructured
DMS [12,13].

By assuming positive g and g� factors, a field B ¼ �Bẑ
tends to organize all spins parallel to the z axis. This
serves as a mean-field reference state from which small
spin fluctuations are defined. By resorting to Holstein-
Primakoff (HP) bosonic fields bðzÞ and byðzÞ, the spin
density SðzÞ can be approximated in the small-fluctuation

regime by SþðzÞ � bðzÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðzÞSp

, S�ðzÞ � byðzÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðzÞSp

,
and SzðzÞ ¼ NðzÞS� byðzÞbðzÞ. This allows the introduc-
tion of a coherent-state path integral representation for the
partition function in imaginary time �:

Z ¼
Z

D½ ����D½ �!!� e�
R

�

0
d�L½ ���; �!!� (4)

with Lagrangian L ¼ R
dz½ �!@�!þP

�
���@���� þ

H½ ���; �!!�. Here, we replace in H the fermionic-field

(carrier) operators by Grassmann numbers ���, ��, and
the HP bosonic (local-spin fluctuation) operators by
complex variables �!, ! (where we omit the arguments z,
� for simplicity). By integrating out the fermionic fields in

Eq. (4)—thanks to the bilinear dependence of L½ ����—,
we end up with an effective picture in terms of local-spin
degrees of freedom Z ¼ R

D½ �!!� expð�Seff½ �!!�Þ with
an action

Seff ¼
Z �

0
d�

Z
dz ½ �!@�!� g��BBðNðzÞS� �!!Þ�

� ln detðG�1
MF þ �G�1Þ: (5)

Here, the kernel G�1 splits into mean-field (G�1
MF) and

fluctuating (�G�1) contributions:

G�1
MF ¼

�
@� þ p2

2m
��

�
1þ�ðzÞ

2
�z; (6)

�G�1 ¼ J

2
½� �!!�z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðzÞSp ð!�� þ �!�þÞ�; (7)

where �ðzÞ ¼ JNðzÞS� g�BB< 0 is the (local) spin
splitting of the itinerant carriers. Notice that the dynamics
of the itinerant carriers is contained in the effective action,
accounting for the retarded interaction between local spins.
A noninteracting spin wave theory for the local spins is

derived from Eq. (5) by expanding Seff up to the 2nd order
in the bosonic variables �!, !. After dropping an irrelevant
energy offset, we find

Seff½ �!;!� ¼
Z �

0
d�

Z
dz

�
�!ðz; �Þ@�!ðz; �Þ þ g��BB �!ðz; �Þ!ðz; �Þ � J

2
½n"MFðzÞ � n#MFðzÞ� �!ðz; �Þ!ðz; �Þ

þ J2S

2

Z �

0
d�0 Z dz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðzÞNðz0Þ

p
G"

MFðz; �; z0; �0ÞG#
MFðz0; �0; z; �Þ �!ðz0; �0Þ!ðz; �Þ

�
: (8)

Here, we introduced the mean-field spin density n�MFðzÞ
and Green’s function G�

MFðz; �; z0; �0Þ of the itinerant car-
riers (� ¼", #) under the action of an effective potential
U�ðzÞ ¼ ��ðzÞ=2 produced by the combined action of the
local-spin distribution NðzÞ and the magnetic field B [17].
The 1st and 2nd terms of Eq. (8) are local in space,
representing the mean-field exchange field experienced
by the local spins. The 3rd term is nonlocal, instead,
accounting for correlation effects due to the response of
itinerant carriers to local-spin reorientations.

The collective dynamics of the local spins is best under-
stood by studying the action Seff in Fourier representation

S eff½ �!;!� ¼ 1

�

X
j;n;m

Z dk

2�
�!ðkþ Kn; �jÞ

� ½D�1ðk; �jÞ�nm!ðkþ Km; �jÞ; (9)

where the action’s kernel is the inverse spin wave propa-

gator with matrix elements ½D�1�nm. These are ultimately

determined by the spectral decomposition of the periodic

local-spin distribution NðzÞ ¼ P
nNn expðiKnzÞ, where

Kn ¼ 2n�=z0 with z0 the magnetic superlattice constant.

In the absence of disorder, a periodic potential U�ðzÞ
leads to the development of a carrier band structure

with the 1st Brillouin zone defined by �K1=2 � k �
K1=2, with k the carriers wave number, and lowest-band

width E1 � ð@2=2mÞðK1=2Þ2 for almost-free carriers

motion. Besides, the expressions for n�MFðzÞ and

G�
MFðz; �; z0; �0Þ simplify conveniently by working within

the parabolic-band regime for a small majority-spin

carrier Fermi energy EF ¼ �þ j�0j=2 	 E1 (with �0 ¼
JN0S� g�BB, the carriers mean spin splitting), implying

that the carriers Fermi wavelength is much larger than z0.
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This eventually restricts our analysis to long-wave
magnons.

Elementary spin excitations.—Close to uniformly
doped DMS [12,13], we find three different sets of
excitations. Collective modes with dispersion �ðkÞ are
determined by studying the conditions under which
det½D�1ðk; i�j ¼ �Þ� ¼ 0. These modes organize in two

branches at different energy scales: soft modes

�soft < xsj�0j and hard modes �stiff 
 j�0j, where xs ¼
ð �n"MF � �n#MFÞ=2N0S 	 1 is the ratio between carrier and
local-spin mean spin densities. Besides, a continuum of
Stoner excitations (corresponding to spin flipping in the
carrier subsystem by an electron-hole transition) is deter-
mined by finding the �SðkÞ satisfying ImD�1ðk; i�jÞ � 0

after analytical continuation i�j ! �þ i0. In the follow-

ing, we focus our discussion on two study cases: weakly
and strongly modulated superlattices in the limit of vanish-
ing magnetic field (B ¼ 0). Moreover, we limit ourselves
to a symmetric magnetic profile NðzÞ ¼ Nð�zÞ, so that
Nn ¼ N�n ¼ N�

n.
Weak modulation.—We first consider the case of a finite

local-spin densityN0 perturbed by a weak harmonic modu-
lation such that NðzÞ¼N0½1þ	cosð2�z=z0Þ� with 		1.
The kernel reduces to D�1ðk; i�jÞ ¼ �i�j1� xs�01þ
xs�0Iðk; i�jÞM, where each term derives from the corre-

sponding 1st, 2nd, and 3rd one of Eq. (8). Here, the integral
factor

Iðk; i�jÞ ¼ �0

xs2N0S

Z dq

2�

fðE"
qÞ � fðE#

qþkÞ
i�j þ E"

q � E#
qþk

(10)

accounts for correlation effects due to the carriers response
to local spin reorientations, where fðE�

q Þ is the Fermi

distribution for carriers of spin � and energy E�
q ¼ Eq þ

��0=2�� with parabolic dispersion Eq ¼ ð@2=2mÞq2.
We evaluate Eq. (10) for zero temperature. Regarding M,
it is a symmetric diagonal-constant (Toeplitz) matrix with
elements 1 and 	=2 along the 1st and 2nd diagonals,
respectively.

We solve det½D�1ðk;�Þ� ¼ 0 by noticing that the
Hermitian D�1 recalls a tight-binding Hamiltonian of
an homogeneous, infinite chain (in momentum space)
where Bloch’s theorem applies: the solution of the eigen-
value equation D�1ðk;�Þj
i ¼ �ð
Þj
i reads fj
i¼P

nexpðin
ÞjKni;�ð
Þ¼���xs�0þxs�0ð1þ	cos
Þ�
Iðk;�Þg, where 0 � 
 ¼ 2�ðz=z0Þ � 2� for 0 � z � z0
and jKni is a spin wave state of wave number Kn. The
spin wave spectrum �ðkÞ is then found by solving the
equation �ð
Þ ¼ 0. For each 
 (indicating the location of
the excitation within each unit cell), we find two solutions
corresponding to soft and hard modes. A scanning over all
values of 
 yields a continuum of excitations bounded by
the curves defined by 
� ¼ 0, �. In Fig. 1, we depict the
low-energy modes �soft together with the Stoner contin-
uum �S for fully (EF � j�0j) and partly (EF > j�0j)

polarized carriers. For half metallic carriers, we find a
small-momentum (long-wave) dispersion

�soft ¼ �	 cos
xsj�0j
þ ð1þ 	 cos
Þxs

�
1� 4EF

3j�0j
�
Ek þOðE2

kÞ: (11)

For large momenta (short wavelengths), we obtain the
mean-field limit �soft ! xsj�0j. This is a consequence of
the parabolic approximation for carriers dispersion: other-
wise, periodic magnon dispersion is obtained. The results
shown in Fig. 1 (and Fig. 2, as well) are then valid in the
central region of the 1st Brillouin zone.
Several features stand out in Eq. (11). The most impor-

tant one is the presence of negative-energy excitations
(�< 0). This means that the reference state with all spins
pointing along the z axis is actually not the ground state
[18]. The latter must be a complex state with lower mag-
netization, instead, developed by long-range antiferromag-
netic (AF) correlations present in the system. Some AF
signatures are already expected in uniform 1D systems
[19]. The introduction of a weak modulation represented
by a finite 	 in Eq. (11) provides an additional source of
AF correlations. This is illustrated by the negative-energy
excitations found in the neighborhood of k ¼ 0 for
0 � 
 < �=2 (doping hills). Besides, we find that positive
dispersions as a function of Ek for a small EF=j�0j in
Eq. (11) turn into negative ones as EF > ð3=4Þj�0j (revers-
ing the sign of the spin wave stiffness and velocity),
eventually leading to the development of a minimum
with negative energy (see Fig. 1). The latter is a purely
1D characteristic: the position of the minima is

FIG. 1 (color online). Continuum of soft modes for fully
[panels (a) and (b)] and partly [panel (c)] polarized carriers
corresponding to weakly modulated local-spin density as
sketched in the inset (	 ¼ 0:1). In all cases, the lower and upper
curves limiting the continuum are defined by the extreme values

� ¼ 0, �, respectively. Note the development of minima as
EF=j�0j increases, occurring even in the case of uniform mag-
netic profile (dashed curve). The mean-field limit corresponds
to �=j�0j ¼ xs ¼ 0:05. In panels (b) and (c), the Stoner
continuum (SC) lies between the curves ��0 þ Ek � 2

ffiffiffiffiffiffiffiffiffiffiffi
EFEk

p
for EF � j�0j and also between ��0 � Ek � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEF þ�0ÞEk

p
for EF > j�0j.
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independent of the superlattice constant z0 and only
weakly dependent on the modulation amplitude 	, persist-
ing after setting 	 ¼ 0 in Eq. (11) (uniform magnetic
profile, depicted as the dashed curve in Fig. 1, which also
corresponds to 
 ¼ �=2). In addition, we find a set of finite
(positive) energy excitations around k ¼ 0 for �=2< 
 �
�, indicating the development of local magnetic anisotro-
pies at the doping valleys. We further notice that the
spectrum can be lifted by simply applying a magnetic
field, turning negative-energy excitations into positive
ones by restoring fully aligned spins as the ground state.
Interestingly, this opens a possibility to control thermal
excitation of magnons with relatively well-defined wave
number around the minimum by a magnetic tuning of
the gap.

Magnetic layering.—We now consider the case of
strongly modulated local-spin density NðzÞ ¼ NL�ðzÞ by
alternating magnetically doped and undoped layers, lead-
ing to a periodic stepwise profile given by

�ðzÞ ¼
�
1 � z1

2 þ nz0 < z < z1
2 þ nz0

0 otherwise;
(12)

where z1 and NL are the width and local spin density of
the magnetic layer, respectively, while z0 is the superlattice
constant. We notice that a direct substitution of this profile
on Eq. (8) could lead to unphysical situations as the
presence of local-spin excitations within undoped layers.
To avoid this problem, we redefine de HP parametrization
of the local-spin density as SþðzÞ � bðzÞ ffiffiffiffiffiffiffiffiffiffiffiffi

2NLS
p

�ðzÞ,
S�ðzÞ � byðzÞ ffiffiffiffiffiffiffiffiffiffiffiffi

2NLS
p

�ðzÞ, and SzðzÞ ¼ ½NLS �
byðzÞbðzÞ��ðzÞ [20]. Let �n ¼ ð1=n�Þ sinðn��0Þ be the
Fourier components of �ðzÞ with 0< �0 ¼ z1=z0 < 1.
The kernel then reads D�1ðk; i�jÞ ¼ �i�j1� xs�0M1 þ
xs�0Iðk; i�jÞM2, with �0 ¼ JNL�0S (where NL�0 ¼ N0

is the mean local-spin density) and Iðk; i�jÞ defined in

Eq. (10). M1 and M2 are Toeplitz matrices with elements
�n and �n=�0 along the nth diagonal, respectively.

To find the corresponding low-energy modes, we
proceed as in the weakly modulated case by studying
the vanishing eigenvalues �ð
Þ ¼ ��þ xs�0½�1þ
Iðk;�Þ=�0�Pn�n cosðn
Þ ¼ 0 of the Hermitian D�1.
Here, we find that the factor

P
n�n cosðn
Þ in �ð
Þ is

nothing but �ðz0
=2�Þ ¼ �ðzÞ [by noticing that 
 ¼
2�ðz=z0Þ and �n ¼ ��n]. This leads to three different
kind of solutions. The first one is determined by those 
s
satisfying �ðz0
=2�Þ ¼ 1. These correspond to a set of
degenerate inlaid modes showing, in the half-metallic
case, a long-wave dispersion (see solid line in Fig. 2 for
the full dispersion)

�soft ¼
�
1� 1

�0

�
xsj�0j þ xs

�0

�
1� 4EF

3j�0j
�
Ek þOðE2

kÞ:
(13)

Here, we find some features similar to those discussed
in the weakly modulated case, including the presence of

negative-energy excitations and the switch to negative dis-
persion (with the eventual development of a minimum) as
EF=j�0j increases. Interestingly, we also find a long-wave
limit�softðk ¼ 0Þ ¼ ð1� 1=�0Þxsj�0j, which decreases as
�0 approaches zero. This means that AF correlations
become stronger for thinner or widely separated layers,
taking the ground state away from that one with fully
aligned spin configuration: reestablishing the reference
state as the ground state would require larger magnetic
fields. We, secondly, find a set of spurious modes with
vanishing energy for those 
s satisfying �ðz0
=2�Þ ¼ 0,
corresponding to undoped regions. These solutions are of
no physical relevance. Finally, we notice that the seriesP

n�n cosðn
Þ actually converges to 1=2 right at the inter-
face between doped and undoped layers. This leads to a
new branch of modes, the dispersion of which is obtained
by replacing xs by x0s � xs=2 in Eq. (13). This means that
spins placed at the interface feel a local environment (here
represented by xs) different from those inlaid, lifting the
long-wave excitation energy and lowering the mean-field
short-wave limit (eventually halving the band width with
respect to inlaid modes). These features are a consequence
of the particular mathematical properties of the stepwise
�ðzÞ. However, more realistic profiles presenting gradual
interfaces shall develop a continuum of modes with similar
characteristics.
Additionally, we notice the development of Kohn-like

anomalies (divergence of spin wave group velocity

@�=@k) in the dispersion of low-energy modes for partly
polarized carriers, close to the points where meeting the
Stoner continuum (see Fig. 2).
Conclusions.—We present a minimal 1D model as a

‘‘proof of concept’’ for the study of magnonic superlattices
in itinerant systems, accounting for backaction and corre-
lation effects in the regime of parabolic spin-carrier
dispersion. We discuss the cases of weakly and strongly

FIG. 2 (color online). Soft mode for fully [panels (a) and (b)]
and partly [panel (c)] polarized carriers corresponding to
strongly modulated local-spin density as sketched in the inset
(�0 ¼ 0:5). Note the negative excitation energy for small k and
the development of a minimum as EF=j�0j increases. The mean-
field limit corresponds to �=j�0j ¼ xs ¼ 0:05. The Stoner con-
tinuum (SC) in panels (b) and (c) coincides with that of Fig. 1.
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modulated magnetic profiles. The latter could be achieved
in DMS superlattices based on few nanometer thick doped
magnetic layers [7–10]. This would allow us to reproduce
some 1D characteristics of interest as negative magnon
dispersion and local minima in 3D systems, opening the
door to thermal excitation of spin waves with a relatively
well-defined wave number in a controlled way. The finding
of negative excitation energies for long-wave magnons
indicate the presence of AF correlations, especially strong
for thin magnetic layers with �0 	 1. These AF signatures
may arise from the effective coupling between distant
layers, and not necessarily between neighboring ones.
The control of spin wave excitations in this context may
require the application of magnetic fields.

We thank A. Reynoso for useful comments. We
acknowledge support from the Ramón y Cajal program,
from the Spanish Ministry of Science and Innovation’s
Projects No. FIS2008-05596, No. FIS2008-02873, and
No. FIS2011-29400, and from the Junta de Andalucı́a’s
Excellence Project No. P07-FQM-3037.

*baltanas@us.es
†frustaglia@us.es

[1] S. Neusser and D. Grundler, Adv. Mater. 21, 2927 (2009).
[2] V. V. Kruglyak, S. O. Demokritov, and D. Grundler,

J. Phys. D 43, 264001 (2010).
[3] B. Lenk, H. Ulrichs, F. Garbs, and M. Münzenberg, Phys.

Rep. 507, 107 (2011).
[4] T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A.H.
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