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Conformal crystals are nonuniform structures created by a conformal transformation of regular two-

dimensional lattices. We show that gradient-driven vortices interacting with a conformal pinning array

exhibit substantially stronger pinning effects over a much larger range of field than found for random or

periodic pinning arrangements. The pinning enhancement is partially due to matching of the critical flux

gradient with the pinning gradient, but the preservation of local ordering in the conformally transformed

hexagonal lattice and the arching arrangement of the pinning also play crucial roles. Our results can be

generalized to a wide class of gradient-driven interacting particle systems such as colloids on optical trap

arrays.
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One of the most important problems for applications of
type-II superconductors is how to create high critical cur-
rents or strong vortex pinning over a wide range of applied
magnetic fields [1]. For over sixty years, it has been under-
stood that the ground state vortex structure is a hexagonal
lattice [2], so many methods have been developed to
increase the critical current using uniform pinning arrays
that incorporate periodicity to match the vortex structure
[3–13]. The pinning is enhanced at commensurate fields
when the number of vortices equals an integer multiple of
the number of pinning sites, but away from these specific
matching fields, the enhancement of the critical current is
lost [14]. Efforts to enhance the pinning at incommensurate
fields have included the use of quasicrystalline substrates
[15] or diluted periodic arrays [16–20], where studies show
that new types of noninteger commensurate states can arise
in addition to the integer matching configurations.
Hyperbolic tessellation arrays were also recently consid-
ered [21].

Part of the problem is the fact that under an applied
current, the vortex structure does not remain uniform but
instead develops a Bean-like flux gradient [22]: the vortex
density is highest at the edges of the sample when the
magnetic field is increased, and highest in the center of
the sample when the magnetic field is removed and only
trapped flux remains inside the sample. As a consequence,
a portion of the pinning sites in uniform pinning arrays is
not fully occupied, suggesting that a more optimal pinning
arrangement should include some type of density gradient
to match the critical flux gradient. Here, we show that a
novel type of pinning array, based on a structure known as a
conformal crystal, produces a much higher critical current
over a much wider range of magnetic fields than any
pinning geometry considered up until now. Conformal
crystals not only have a density gradient but also preserve

the local ordering normally associated with periodic
pinning arrays.
Conformal crystals are a class of two-dimensional (2D)

structures created by the application of a conformal (angle-
preserving) transformation to a regular lattice in the com-
plex plane [23,24]. Figure 1 illustrates a conformal crystal
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FIG. 1. A conformal transformation is applied to the semi-
annular section of a regular hexagonal lattice shown in (a) to
create the conformal crystal structure shown in (b) (see the
Supplemental Material [25]). Points A–F in (a) are mapped by
the transformation to points a–f in (b), respectively. The straight
contour lines connecting nearest neighbor lattice points in (a) are
bent into arcs in (b), but the local sixfold ordering of the lattice
points is maintained. Pinning sites are placed at the vertices
formed by the intersections of the contour lines in (b).
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obtained via the transformation of a hexagonal lattice [25].
The contour lines connecting nearest neighbors, which are
straight lines for the original hexagonal lattice, are bent
into arcs but still cross at angles of �=3, preserving the
sixfold coordination of individual pinning sites in spite of
the clear density gradient. To create a pinning lattice, we
place pinning sites at the vertex locations where the con-
tour lines intersect. Conformal crystal structures have been
studied experimentally for repulsively interacting mag-
netic spheres confined to a 2D container that is tilted so
that the gravitational force on the particles produces a
mechanically stable but nonuniform crystal [24]. Other
systems where conformal crystals arise include foams
under an external field [26,27] and large arrays of classical
Coulomb charges in confined circular potentials where
local triangular ordering occurs along curved lattice
lines [28].

Simulation.—We conduct a flux gradient density simu-
lation of the type previously used to study vortex critical
states and magnetization with random [29,30] and periodic
pinning arrays [14], featuring a 2D slice (in the x-y plane)
of a T ¼ 0 superconducting slab, with rigid vortices par-
allel to the sample edge (H ¼ Hẑ). Wework in the London
limit of vortices with pointlike cores. Figure 2 shows our
simulation geometry, featuring an outer pin-free ‘‘exter-
nal’’ region surrounding a central pinned ‘‘sample’’ region
that consists of two conformal crystals placed with their
highest density regions adjacent to the pin-free region.
Details on the construction of the conformal crystal are
given in the Supplemental Material [25]. We use periodic
boundary conditions in the x and y directions and consider
a 36�� 36� system with a pinned region extending from
x ¼ 6� to 30�, where � is the penetration depth. This
geometry was previously shown to be large enough to
capture accurately the behavior of the magnetization
curves [14,29,30].

The dynamics of vortex i are obtained by integrating the
overdamped equation �ðdRi=dtÞ ¼ Fvv

i þ Fvp
i þ Fd.

Here, � is the damping constant which is set equal to

unity. The vortex-vortex interaction force is Fvv
i ¼

PNv

j¼1 sisjF0K1ðRij=�ÞR̂ij, where K1 is the modified Bessel

function, Ri is the location of vortex i, Rij ¼ jRi �Rjj,
R̂ij ¼ ðRi �RjÞ=Rij, F0 ¼ �2

0=ð2��0�
3Þ, and �0 is

the flux quantum. The sign prefactor si is þ1 for a vortex
and �1 for an antivortex. The pinning sites are modeled
as Np nonoverlapping parabolic traps with Fvp

i ¼
PNp

k¼1ðFpr
p
ik=rpÞ�ððrp � rpikÞ=�ÞR̂p

ik, whereR
p
k is the loca-

tion of pinning site k, rpik ¼ jRi �Rp
k j, R̂p

ik ¼
ðRi �Rp

k Þ=rpik, � is the Heaviside step function, rp is

the pinning radius, and Fp is the pinning strength. Unless

otherwise noted, we take rp ¼ 0:12� and Fp ¼ 0:55F0,

placing us well outside the collective pinning regime.
In this work, we always maintain the pinning density at a
nominal value of 1:0��2, corresponding to Np ¼ 864 pins.

Fd ¼ Fdx̂ represents an external driving force arising from
an applied current, which is used to measure transport
properties; this is kept at zero for all magnetization mea-
surements. All forces are measured in units of F0 and all
lengths in units of �. The flux density H in the unpinned
region is measured in units of H�, the field at which the

average unit density of vortices equals the average unit
density of pinning sites.
To perform a complete field sweep, we begin with zero

vortex density and then quasistatically add vortices in the
unpinned region (labeled A in Fig. 2) at randomly chosen
nonoverlapping positions. As the vortex density increases
in the pin-free region, the vortices drive themselves into the
pinned region due to their own repulsive interactions,
creating a flux density gradient [14,29,30]. We then reverse
the field by first removing vortices from the pin-free region
and then adding antivortices, which repel each other but are
attracted to vortices. When a vortex and antivortex come
within 0:3� of each other, they are both removed from the
system to simulate an annihilation event. To complete an
entire magnetization loop, we continue to add antivortices
until the external field reaches its most negative value, and
then remove antivortices from the pin-free region to bring
the external field back up to zero. The average magnetiza-
tion M is the difference between the flux density H in
the unpinned region and B in the pinned region M ¼
�ð1=4�VÞRðH � BÞdV, where V is the sample area.

The critical current Jc can be derived from the magnetiza-
tion curve using the Bean critical state model [22], as
described in Refs. [31–33].
Results.—In Fig. 3, we plot an example of complete

hysteresis loops M versus H=H� for the conformal pin-

ning array (CPA) and arrays with randomly distributed
pins. Each sample contains the same number Np of pin-

ning sites of equal size and strength. In comparison with
random pinning (inner curve), we find that M is much
higher at all fields for the CPA (outer curve). In Figs. 4(a)
and 4(b), we plot the magnetization loop half-width MHW
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FIG. 2. The gradient-driven sample geometry consists of two
conformal crystals facing each other in the pinned region. Open
circles are pinning site locations. Vortex addition and subtraction
occurs in the pin-free region labeled A.
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measured at an intermediate field H=H� ¼ 1:0 and a high

field H=H� ¼ 1:4, for a variety of pinning sizes and

strengths. The CPA consistently enhances the magnetiza-
tion by a factor of 4 relative to random pinning. The flux
profiles plotted in the Supplemental Material Fig. 1 [25]
show that the random array produces a Bean-like profile
that becomes shallower as H increases. In contrast, at
higher fields, the CPA does not have a uniform flux
gradient but instead develops a double slope profile, with
a larger flux gradient near the edge of the sample and a
much shallower or nearly flat flux profile in the center of
the sample. As H increases, the sharper slope region
decreases in width and is replaced by the shallow slope
region. Consequently, the CPA maintains a large M even
for high values of H.

Since the CPA has a pinning gradient, it could be pos-
sible that any type of pinning array with an equivalent
gradient would also exhibit a pinning enhancement com-
pared to uniform pinning arrays and could be just as
efficient at pinning as the CPA. We find that this is not
the case. In Figs. 3, 4(a), and 4(b), we show magnetization
results for a random pinning array with pinning gradient
equivalent to the CPA. The random pinning with gradient
exhibits a modest enhancement of M compared to
the uniform random pinning array but trails the CPA sig-
nificantly for all but the very lowest fields: as Figs. 4(a) and
4(b) indicate, the loop half-width for the CPA remains
larger by a factor of 3 to 4. This result indicates that other
properties of the CPA, and not merely the pinning gradient,
are largely responsible for the enhanced pinning. We find
that the structure of the CPA suppresses certain modes of
vortex motion. For example, in random pinning arrays, the
distribution of pins is inhomogeneous; as a consequence,

persistent riverlike vortex flow patterns arise through
regions where the pinning density is slightly lower than
average [30]. In contrast, because the CPA is an ordered
structure, it lacks any such weak spots through which
vortices would prefer to flow.
To confirm the effectiveness of the CPA at enhancing the

critical current compared to random pinning arrays, we
examine transport properties by field cooling the system at
H=H� ¼ 1, driving the vortices with a slowly increasing

force Fd ¼ Fdx̂, and measuring the average vortex veloc-
ity in the drive direction hVxi to produce the equivalent of
an experimental VðIÞ curve [34]. The transport geometry
and simulation method are detailed in the Supplemental
Material [25]. Figure 4(c) shows velocity-force curves for
the CPA and random pinning arrays. The CPA clearly
exhibits an increased resistance to flux flow, with a much
larger depinning threshold. Above depinning, vortices con-
tinue to move more slowly through the CPA for a wide
range of driving force.
We next address whether the conformal pinning arrays

produce higher pinning compared to other nonrandom
pinning arrays. In Fig. 4(d), we plot M versus H=H� for

the CPA and for square and triangular periodic pinning
arrays with the same average pinning density and strength.
The CPA has the highest value ofM over most of the range
of H=H� except at the first matching field, where M is

enhanced in the periodic pinning arrays due to a
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FIG. 3 (color online). The magnetizationM versusH=H�. The
outer dark (black) curve represents a sample with a CPA, the
inner light (red) curve a sample with a uniformly dense random
arrangement of pinning sites, and the middle light (green) curve
a random arrangement of pinning sites with a pinning gradient
equivalent to the CPA.
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FIG. 4 (color online). (a),(b) MHW, the half-width of the mag-
netization loop, measured atH=H� ¼ 1:0 (filled symbols) and at

H=H� ¼ 1:4 (open symbols) and normalized to MHW for the

random pinning array (squares). The circles represent the CPA,
the triangles the random array with CPA-equivalent pinning
gradient. (a)MHW versus Fp for fixed rp ¼ 0:12. (b)MHW versus

rp for fixed Fp ¼ 0:55. (c) hVxi versus Fd for vortices driven

across a CPA (right curve, black), a random array (center curve,
red), and a random array with a pinning gradient (left curve,
green). (d) Magnetization loops for the CPA (outer curve, black)
compared to periodic pinning arrays, square (center curve, blue)
and triangular (inner curve, purple), at Fp ¼ 0:55 and rp ¼ 0:12.
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commensurability effect [14]. There are no peaks or other
anomalies inM for the CPA since the triangular ordering in
this array is only local. This shows that although a periodic
pin structure can strongly enhance the pinning, the
enhancement occurs only for a very specific matching
field. In contrast, the CPA produces a significant enhance-
ment of the pinning over a very broad range of fields,
extending well above the first matching field. This
enhancement arises not only from the presence of a pinning
gradient, which periodic pinning lacks, but also because
the arching structure of the CPA blocks easy-flow chan-
nels, which are present along the symmetry directions of
periodic pinning arrays [35,36] and cause a drop in the
critical current above a commensurate field.

To gain further insight into the effectiveness of the CPA,
we consider the details of vortex entry. Since the vortex
system is maintained in a critical state when measuringM,
the vortex motion can be characterized by avalanche dy-
namics [37]. In Fig. 5(a), we show the probability distri-
bution PðnmÞ for the number nm of vortices participating in
individual avalanche events during ramp-up. For the CPA,
PðnmÞ is more heavily weighted toward large events com-
pared to the random arrays. This is due to the suppression
of easy vortex entry channels by the CPA. In order for
vortices to enter the CPA sample, considerable pressure
must build up in the external region, and the resulting
avalanches are larger.

Finally, we characterize the conditions under which the
effectiveness of the CPA begins to decrease. In Fig. 5(b),
we compare M versus H=H� for the CPA and uniform

random arrays up to H=H� ¼ 4:0. The enhanced pinning

for the CPA is most pronounced below H=H� ¼ 2:0;

above this field, M remains larger for the CPA than for
the random pinning array, but the size of the enhancement
is reduced. In Fig. 5(c), we plot the corresponding pin
occupancy P, which is the fraction of pinning sites occu-
pied by vortices. For the random pinning array, P mono-
tonically increases over the entire range of H=H�. In

contrast, after running well above the P value for the
random pinning array at lower fields, P for the CPA rolls
over and begins to decrease with increasing field above
H=H� � 2. This is the same field at which the higher

gradient region seen in the Supplemental Material
Fig. 1(a) begins to disappear from the sample, as shown
in the Supplemental Material Fig. 2 [25]. Since the pinning
density at the edge of our CPA is approximately 2, all of the
pinning sites near the edge of the sample become occupied
for H=H� � 2. For H=H� < 2, the vortex density just

outside the sample can be matched purely by pinned
vortices just inside, but for H=H� > 2, pressure from out-

side the sample forces interstitial vortices to enter, depin-
ning some of the vortices already present and producing a
drop in P and M.
The random pinning array always has empty pinning

sites near the edge of the sample in places where two pins
happen to be so close together that the vortex-vortex inter-
action energy would be prohibitively high if both pins were
occupied simultaneously. As the field increases, these pin-
ning sites gradually become occupied. Even though P for
the CPA falls below P for the random array at higher fields,
the pinning enhancement remains significantly stronger
for the CPA, as the presence of weak spots in the random
array facilitates vortex entry deep into the sample region.
Conclusion.—We demonstrate strongly enhanced vortex

pinning by a conformal crystal array of pinning sites. The
conformal crystal is constructed by a conformal transfor-
mation of a hexagonal lattice, producing a nonuniform
structure with a gradient where the local sixfold coordina-
tion of the pinning sites is preserved, and with an arching
effect. The conformal pinning arrays produce significantly
enhanced pinning over a much wider range of field than
that found for other pinning geometries with an equivalent
number of pinning sites, such as random, square, and
triangular. We show that the pinning enhancement is not
simply due to the pin density gradient but is also due to the
preservation of the local ordering of the pinning sites and to
the arching pin arrangement, which prevent the formation
of easy channels of vortex flow. The pinning enhancement
we find is substantial and will be important for a wide
range of superconductor applications and flux control. The
effects of conformal crystalline substrates on ordering or
dynamics of a monolayer of particles could also be studied
for vortices in Bose-Einstein condensates on optical latti-
ces [38] or colloidal particles on optically created substrate
arrays [39]. The enhanced pinning also suggests that
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FIG. 5 (color online). (a) PðnmÞ, the distribution of the number
of vortices nm in individual avalanches occurring as the field
H=H� is raised from 0.65 to 2.0, for the CPA (circles), uniform

random pinning (squares), and random pinning with gradient
(triangles). (b),(c) High-field behavior of pinning arrays on the
initial ramp-up only: in (b), magnetization M, and in (c), the
fraction of occupied pinning sites P. The CPA is represented by
the upper (black) curve, the uniform random array by the lower
(red) curve, and random with gradient by the middle (green)
curve. The dotted line indicatesH=H� ¼ 2, whereM and P both

drop for the CPA.
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conformal arrays could be used to increase friction for
particle-surface interactions.

This work was carried out under the auspices of the
NNSA of the U.S. DOE at LANL under Contract
No. DE-AC52-06NA25396.
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