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BP 70239, 54506 Vandoeuvre Les Nancy Cedex, France
(Received 15 March 2013; published 28 June 2013)

The frequency dependent phonon Boltzmann equation is transformed to an integral equation over the

irreducible part of the Brillouin zone. Simultaneous diagonalization of the collision kernel of that equation

and a symmetry crystal class operator allow us to obtain a spectral representation of the lattice thermal

conductivity valid at finite frequency. Combining this approach with density functional calculations, an

ab initio dynamical thermal conductivity is obtained for the first time. The static thermal conductivity is

also obtained as a particular case. The method is applied to C, Si, and Mg2Si and excellent agreement is

obtained with the available static thermal conductivity measurements.
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The study of lattice heat transport in a crystal compound
requires the knowledge of the phonon excitations as well as
a model of transport which, in bulk systems, is conven-
iently taken to be the Boltzmann equation. Harmonic
phonon spectra are routinely obtained from ab initio cal-
culations based on the density functional theory, even for
complicated compounds [1]. However to access transport
properties like the thermal conductivity such calculations
are not sufficient since it is necessary to describe the
scattering of harmonic phonons by other phonons, impu-
rities, and crystal boundaries. Among those three scattering
processes the scattering by the others phonons is usually
the more demanding since it originates in the anharmonic
part of the total energy and therefore at least the third
variation of the energy with respect to atomic displace-
ments is needed. Such calculations, however, have been
shown to be feasible, either from density perturbation
theory [2], or using finite displacements [3].

Once these scattering processes are calculated, and the
related collision matrices constructed, the transport
Boltzmann equation still remains to be solved. Among
the few published results for the ab initio calculations of
the thermal conductivity, all solve this equation iteratively
and consider the stationary case [4]. In the static case great
progress has been made to reduce the number of iterations
needed [5,6]. But it may still be desirable to have a com-
plementary method, which allows us to access the dynami-
cal lattice thermal conductivity. This can be of interest for
applications. It is, for example, the case in thermoelectric-
ity where the lattice thermal conductivity should be as
small as possible to increase the figure of merit ZT. In
this context the study of time- or frequency-dependent
lattice thermal conductivity is also important and is the
subject of intense research [7]. For a material to be a good
thermoelectric it should have good electrical properties
such that conductivity and thermopower but should also
be a poor thermal conductor. These two requirements have
proved to be difficult to be achieved together in bulk

materials. One way to circumvent the difficulty is to nano-
structurate the materials [8]. Another possibility may be to
use finite frequency properties. It is known [9] that at a
certain frequency the thermal conductivity starts dropping
rapidly and that will increase the thermoelectric efficiency.
The dropping frequency will be calculated here for the first
time using ab initio calculations.
In this Letter I present a direct noniterative solution to

the Boltzmann equation applicable to the stationary and
nonstationary regime. This allows calculating the static and
dynamical thermal conductivities and the accuracy of the
method allows us to study materials which are good or poor
thermal conductors. A single parameter controls the accu-
racy, mainly the number of points used to sample the first
Brillouin zone. The Letter is organized as follows. The
Boltzmann equation is first reduced to an integral equation
over the irreducible part of the Brillouin zone. Then the
thermal conductivity is expressed in terms of the collision
operator defined during the reduction process. This opera-
tor is symmetric and, due to the reduction over the irre-
ducible part of the Brillouin zone, is small enough to be
diagonalized numerically. Consequently, a spectral repre-
sentation is obtained for the thermal conductivity, valid at
zero and finite frequency. Finally, the method is applied to
compounds having from very large to very low thermal
conductivity. In each case the agreement with experiment
is excellent.
The phonon Boltzmann equation is an integral equation

over the first Brillouin zone which in its linearized version
takes the form [10]

@nð1Þqp

@t
þ @nð0Þqp

@T

@T

@~r
� ~vqp ¼ Cðqp; nð1ÞqpÞ þ 1

2
Dðqp; nð1ÞqpÞ:

(1)

The scattering of the phonon appears on the right-hand side
of the equation through the term CðqpÞ for the collision
processes, and with DðqpÞ for the decay processes. In the
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above equations nqp is the occupation function for a pho-

non of wave vector q in branch p. ~vqp is the velocity and

T ¼ Tð~r; tÞ the temperature. nð0Þqp is the occupation function

at equilibrium, and nð1Þqp is the first order deviation from

equilibrium, nqp � nð0Þqp þ nð1Þqp. It is possible to rearrange

the scattering integral of Ref. [10] in order to make its
relation to the lifetime of phonons calculated in [3] more
explicit[11],

Cðqp;nð1ÞqpÞ þ 1

2
Dðqp;nð1ÞqpÞ ¼ �X

q0p0
�0

qp;q0p0n
ð1Þ
q0p0

sinhð@!q0p0
2kBT

Þ
sinhð@!qp

2kBT
Þ

(2)

with

�0
qp;q0p0 ¼ � �

@
2

X
qbpb

jFpp0pb

q�q0qb
j2 �ðq� q0 þ qbÞ

sinhð@!qbpb

2kBT
Þ

� ½�ð!q0p0 �!qp þ!qbpb
Þ

þ �ð!q0p0 �!qp �!qbpb
Þ�

þ �

@
2

X
qbpb

jFpp0pb

qq0qb
j2 �ðqþ q0 þ qbÞ

sinhð@!qbpb

2kBT
Þ

� �ð!q0p0 þ!qp �!qbpb
Þ þ �qq0�pp0

1

�qp
:

Fpp0pb

qq0qb
is the strength of the interaction in between the three

phonons involved in the scattering [3] and � a function
which is zero unless its argument is a reciprocal lattice
vector, in which case it takes the value 1.

We can then make the following ansatz for nð1Þqp,

sinhð@!qp=2kBTÞnð1Þqp � fqp � P
3
�¼1

R
dt0½@Tðt0Þ=@r���

f�qpðt � t0Þ, where � is used to label the Cartesian compo-

nents of the vector ~fqpðt� t0Þ. If Eq. (1) is transformed to

Fourier space we obtain

� i! ~fqpð!Þ þ @!qp

4kBT
2 sinhð@!qp

2kBT
Þ
~vqp

¼ �X
q0p0

�0
qp;q0p0 ~fq0p0 ð!Þ: (3)

The velocity is odd under inversion, ~v�qp ¼ � ~vqp, and

it is easy to check that the collision matrix is even,

�0
�qp;�q0p0 ¼ �0

qp;q0p0 , which means that ~f�qpð!Þ ¼
� ~fqpð!Þ. Because the Brillouin zone contains q as well

as �q it shows that the collision matrix is not unique and
that it is indeed possible to make other choices �qp;q0p0

such that
P

q0p0�0
qp;q0p0 ~fqpð!Þ ¼ P

q0p0�qp;q0p0 ~fqpð!Þ. We

choose to work with �qp;q0p0 given by

�qp;q0p0 ¼ �qq0�pp0
1

�qp
þ �

@
2

X
qbpb

jFpp0pb

qq0qb
j2 �ðqþ q0 þ qbÞ

sinhð@!qbpb

2kBT
Þ

� ½�ð!q0p0 �!qp þ!qbpb
Þ

þ �ð!q0p0 �!qp �!qbpb
Þ

þ �ð!q0p0 þ!qp �!qbpb
Þ�;

which can be obtained by a dummy change of variable
q0 ! �q0 in the summation of Eq. (3). This matrix is
clearly symmetric and can be shown to be positive definite
using the same methods as [12].
In the following we denote by q a general point in the

Brillouin zone, and by k a point in the irreducible part of
the Brillouin zone. R are rotations of the isogonal point
group g of the crystal and jgj denotes the cardinal of that
group. We denote by gk the multiplicity for the branches of
the star of k.
In Eq. (3) if we restrict the velocity field to the irreduc-

ible part of the Brillouin zone the Boltzmann equation
becomes

@!kp

4kBT
2 sinhð@!kp

2kBT
Þ
v�
kp ¼ � X

R0k0p0
ð�kp;R0k0p0 � i!�k;R0k0�pp0 Þ

� gk0

jgj f
�
R0k0p0 ð!Þ:

Under the rotations R the velocity transforms like v�
Rkp ¼P

�R��v
�
kp and it can be checked that the collision

matrix is invariant, �Rkp;Rk00p0 ¼ �kp;k0p0 . Therefore, the

Boltzmann equation written at point Rk shows that

f�R0k0p0 ð!Þ andP�R
�1
��f

�
RR0k0p0 ð!Þ fulfills the same equation.

This gives f�Rkpð!Þ¼P
�R��f

�
kpð!Þþu�ð!Þ, where ~uð!Þ

is any vector in the null space of�kp;R0k0p0 � i!�k;R0k0�pp0 .

We will see later that the null space of this operator does
not contribute to the lattice thermal conductivity and there-

fore that we can choose ~uð!Þ ¼ 0. In other words ~fkpð!Þ
transforms like the velocity and can therefore be under-
stood as being proportional to the phonon mean free path.
The Boltzmann equation can finally be reduced to an
integral equation over the irreducible part of the Brillouin
zone only,

@!kp

4kBT
2 sinhð@!kp

2kBT
Þ

ffiffiffiffiffiffi
gk
jgj

s
v�
kp

¼ � X
�k0p0

ð ~��kp;�k0p0 � i!�kk0�pp0P��
k0 Þ

ffiffiffiffiffiffi
gk0

jgj
s

f�
k0p0 ð!Þ

with

~��kp;�k0p0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
gkgk0

jgj
s X

R0
R0
���kp;R0k0p0 and

P��
k ¼ gk

jgj
X
R

R���k;Rk:
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In matrix notation this is written as jXi ¼ �ð ~��
i!PÞjfð!Þi, with obvious definitions for ~� and P, and

jXi�kp ¼ @!kp

4kBT
2 sinhð@!kp

2kBT
Þ

ffiffiffiffiffiffi
gk
jgj

s
v�
kp and

jfð!Þi�kp ¼
ffiffiffiffiffiffi
gk
jgj

s
f�kpð!Þ:

The operator Pk is working like the identity on vectors

which transforms like the velocity, Pk ~vkp ¼ ~vkp.
~� is a

collision matrix. It shows that when working in the irre-
ducible part of the Brillouin zone, and considering a tran-
sition from vector k to k0, one should, obviously, also
consider all the transitions to the different branches of
the star of k0. Using the group properties of the set of
rotation matrices, one can show that the matrices Pk and
~� are symmetric.

The energy flux through the lattice is given by ~JEðtÞ ¼
1=V

P
qp@!qp ~vqpnqpðtÞ; therefore, its Fourier transform is

~JEð!Þ ¼ ��ð!Þ@T=@~rð!Þ with the thermal conductivity
tensor given by

���ð!Þ ¼ � 1

V

X
qp

@!qp

sinhð@!qp

2kBT
Þ
v�
qpf

�
qpð!Þ

¼ 4kBT
2

V

X
qpq0p0

f�qpð!Þð�qp;q0p0 � i!�q;q0�pp0 Þ

� f�
q0p0 ð!Þ:

In the second step we have shown that the factor of f�qpð!Þ
in the summand is just the drift term in the Boltzmann
equation. As for the Boltzmann equation, the double inte-
gral over the Brillouin zone can be reduced to the irreduc-
ible part. We obtain

���ð!Þ ¼ 4kBT
2

V
hfð!ÞjIð�;�Þð ~�� i!PÞjfð!Þi

with I�kp;�0k0p0 ð�;�Þ ¼ �kk0�pp0
P

RR��R��0 . This opera-

tor is diagonal in the kp space. Its value for the Cartesian
variables � and � depends on the symmetry class of the
system and can easily be calculated using the great or-
thogonality theorem of groups theory. From its definition it
is also clear that Ið�;�Þ ¼ I tð�;�Þ and that its purpose is
to project out the components of the velocity and mean free
path not involved it the �� component of the conductivity

tensor. The operator ~�ð�;�;!Þ � Ið�;�Þð ~�� i!PÞ
which appears in the thermal conductivity transforms the

same way as I , ~�ð�;�;!Þ ¼ ~�tð�;�;!Þ; therefore,

using the symmetry of ~� and Pwe obtain the commutation

relation ½Ið�;�Þ; ~�� i!P� ¼ 0. This last identity
implies the Onsager reciprocity relations at finite fre-
quency, ���ð!Þ ¼ ���ð!Þ and therefore allow us to obtain
a more symmetric equation for the thermal conductivity,

���ð!Þ ¼ 2kBT
2

V
hfð!Þj½Ið�;�Þ þ Ið�;�Þ�

� ð ~�� i!PÞjfð!Þi;
because Ið�;�Þ þ Ið�;�Þ is a symmetric matrix. It shows

also that the null space of ½Ið�;�Þ þ Ið�;�Þ�ð ~�� i!PÞ
does not contribute to the lattice thermal conductivity. A

vector which belongs to the null space of ~�� i!P also

belongs the null space of ½Ið�;�Þ þ Ið�;�Þ�ð ~�� i!PÞ.
Therefore, we can choose a solution to the Boltzmann

equation which is orthogonal to kerð ~�� i!PÞ and trans-

forms like the velocities, jfð!Þi ¼ �ð ~�� i!PÞ�1jXi.
Here �1 is used to denote the Moore-Penrose inverse.
The thermal conductivity can now be expressed as an
average value over the known vector jXi,

���ð!Þ ¼ 2kBT
2

V
hXjð ~�� i!PÞ�1½Ið�;�Þ þ Ið�;�Þ�jXi:

The matrices Ið�;�Þ þ Ið�;�Þ and ~� are symmetric
and commute. It is therefore possible to find a set of

eigenvectors jeri such that ~�jeri ¼ !rjeri and ½Ið�;�Þ þ
Ið�;�Þ�jeri ¼ irð�;�Þjeri. This gives, finally, a spectral
representation for the dynamical thermal conductivity,

���ð!Þ ¼ 2kBT
2

V

X0

r

irð�;�ÞjhXjerij2
!r � i!

¼
Z

d!0 ���ð!0Þ
!0 � i!

;

(4)

where ���ð!0Þ is a spectral density and the prime in the

summation shows that the null space has to be excluded.
This method has been applied to materials with high

(diamond), medium (silicon), and low (magnesium sili-
cide) thermal conductivity. Ab initio calculations are per-
formed to obtain the interaction strength in between the

phonons, Fpp0pb

qq0qb
, using the method in [3]. Therefore no

adjustable parameters are used in the calculations. For the
calculations of the thermal conductivity a 15� 15� 15
mesh is used to sample the Brillouin zone and the scatter-
ing by isotopes and surfaces have been included in the
collision matrix. More details can be found in the
Supplemental Material [13]. The results of the calculations
are shown in Fig. 1(a) for the static thermal conductivity. In
each case the agreement with experiment is excellent. This
has to be related to the use of the previous equation which
only involves the diagonalization of small matrices and
where symmetry has been used at best to reduce numerical
uncertainties.
The real (�r) and imaginary parts (�i) of the dynamical

lattice thermal conductivity at room temperature are shown
in Fig. 1(b) as a function of frequency. A rapid drop of �r is
observed after some cutoff frequency 1=�0 which also
correspond to a maximum in �i. Such a rapid decrease
for �r has already been obtained in silicon using molecular
dynamics calculations [14], and is known for long time [9],
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in principle. When considering rapid time variation, the
Fourier’s law has to be modified to account for the finite
time needed to establish current and thermal waves may
eventually be formed. Notice that the calculated thermal
conductivity is dependent upon the use of the linearized
Boltzmann equation and as we have seen in Eq. (4), in
some ways it characterizes it. From a physical point of
view such a linearized equation, for example, through the
use of an equilibrium distribution in the drift term, may not
be sufficient when a rapid time variation is imposed on the
system. The drift operator would need to be treated com-
pletely [15]. More generally, more work is needed for the
calculation of the phonon second sound, but fortunately

the structure of the equation to be considered does not
change [16] and therefore our procedure can be applied.
Such work is in progress.
The evolution of 1=�0 with temperature is shown in the

inset of Fig. 1(a). It is clear that at high enough temperature
it becomes proportional to the temperature, as required for
a relaxation time. It can also be seen in Fig. 1(b) that the
spread of �i looks broader for silicon. This may indicate
that a single relaxation time is not sufficient to account for
the dynamics and would lead to a more complicated evo-
lution of the temperature. This is indeed confirmed by the
spectral density ��� plotted in the inset of Fig. 1(b) since

there is a significant weight around 5� 108 Hz.
To summarize, exploiting the symmetry of the system

we have given a solution to the Boltzmann equation which
allows us to compute the thermal conductivity from a
spectral representation. It is done by computing the eigen-
values and eigenvectors of a symmetrized matrix of
reduced dimensions. The numerical errors are therefore
expected to be small. In addition it is no more difficult to
obtain the dynamical thermal conductivity that is calcu-
lated here for the first time. This allows for a quantitative
estimate of the drop frequency of �r. This can be of great
interest in thermoelectric applications where � needs to be
reduced to increase ZT, but also for the industry of micro-
processors. Considering their clock rate, heat transport at
high frequency needs to be understood. The drop frequen-
cies of the materials calculated here are very large but we
should notice that the linearization of the Boltzmann equa-
tion may affect those values. Experimentally, a decrease of
�r at much lower frequencies has been reported in alloy
compounds [7] and could lead to applications elsewhere.
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FIG. 1 (color online). Lattice thermal conductivities for dia-
mond (red), Si (blue), andMg2Si (green). (a) The calculated (full
lines) and experimental (circles) of static thermal conductivity as
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figure.

PRL 110, 265506 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
28 JUNE 2013

265506-4

http://dx.doi.org/10.1103/PhysRevB.86.224303
http://dx.doi.org/10.1103/PhysRevB.67.144304
http://dx.doi.org/10.1103/PhysRevB.67.144304
http://dx.doi.org/10.1103/PhysRevB.84.094302
http://dx.doi.org/10.1103/PhysRevB.84.094302
http://dx.doi.org/10.1103/PhysRevB.80.125203
http://dx.doi.org/10.1103/PhysRevB.82.134301
http://dx.doi.org/10.1103/PhysRevB.82.134301
http://arXiv.org/abs/1212.0470
http://dx.doi.org/10.1103/PhysRevB.76.075207
http://dx.doi.org/10.1103/PhysRevB.76.075207


[8] Thermoelectrics Handbook: Macro to Nano edited by
D.M. Rowe (CRC Press, Boca Raton, 2005).

[9] M. Chester, Phys. Rev. 131, 2013 (1963).
[10] F. J. Ziman, Electrons and Phonons (Oxford University,

London, 1960).
[11] G. P. Srivastava, The Physics of Phonons (Taylor and

Francis, New York, 1990).
[12] G. Liebfried, Handbuch der Physik (Springer-Verlag,

Berlin, 1955).
[13] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.110.265506 for the
details about the ab initio calculations and the scattering
by isotopic impurities and surfaces.

[14] S. G. Volz, Phys. Rev. Lett. 87, 074301 (2001).
[15] R. A. Guyer and J. A. Krumhansl, Phys. Rev. 133, A1411

(1964).
[16] L. J. Sham, Phys. Rev. 163, 401 (1967).
[17] A. V. Inyushkin, A.N. Taldenkov, A.M. Gibin, A. V.

Gusev, and H. J. Pohl, Phys. Status Solidi C 1, 2995
(2004).

[18] L. Wei, P. K. Kuo, R. L. Thomas, T. R. Anthony, and W. F.
Banholzer, Phys. Rev. Lett. 70, 3764 (1993).

[19] J. J. Martin, J. Phys. Chem. Solids 33, 1139 (1972).
[20] M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sata, K.

Makino, M. Fukano, and Y. Takanashi, J. Cryst. Growth
304, 196 (2007).

PRL 110, 265506 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
28 JUNE 2013

265506-5

http://dx.doi.org/10.1103/PhysRev.131.2013
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.265506
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.265506
http://dx.doi.org/10.1103/PhysRevLett.87.074301
http://dx.doi.org/10.1103/PhysRev.133.A1411
http://dx.doi.org/10.1103/PhysRev.133.A1411
http://dx.doi.org/10.1103/PhysRev.163.401
http://dx.doi.org/10.1002/pssc.200405341
http://dx.doi.org/10.1002/pssc.200405341
http://dx.doi.org/10.1103/PhysRevLett.70.3764
http://dx.doi.org/10.1016/S0022-3697(72)80273-7
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.270
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.270

