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Fiber Diffraction without Fibers
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Postprocessing of diffraction patterns of completely randomly oriented helical particles, as measured,
for example, in so-called ““diffract-and-destroy”’ experiments with an x-ray free electron laser can yield
“fiber diffraction” patterns expected of fibrous bundles of the particles. This will allow “single-axis
alignment” to be performed computationally, thus obviating the need to do this by experimental means

such as forming fibers and laser or flow alignment. The structure of such particles may then be found by
either iterative phasing methods or standard methods of fiber diffraction.
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Fiber diffraction is responsible for some of the best-
known work on the structure determination of matter.
Examples are the structure of deoxyribose nucleic acid
[1] and the structure of helical viruses; see, e.g., Ref. [2].
The long filamentous particles are drawn into a fiber which
may be regarded as a bundle in which the particles have
their long axes parallel to one another with random inter-
particle distances and random azimuthal orientations. The
seminal work in this field is that of Cochran, Crick, and
Vand (CCV) [3]. If the scattering vector q is represented by
the reciprocal-space cylindrical coordinates (R, i, ), it
was shown by CCV that scattered intensity from a helix is
found only at discrete values of { = {; = 27l/c, where ¢
is the value of the repeat distance along the helix axis, and /
is an integer specifying the so-called “layer line” on a
diffraction pattern observed on a detector placed parallel to
the fiber and perpendicular to the wave vector of an inci-
dent plane wave of radiation, e.g., x rays. CCV also
deduced that the intensity of a particular layer line / may
be written as

I(R, &) = Y G,(R, {)G%/ (R, &) expli(n — n)y], (1)

n,n’'

where

Gu(R &) = D fiJu(Rr)) exp(—ing ;) exp(idiz)),  (2)
J

fj is the atomic form factor of atom j with cylindrical
coordinates (r;, ¢;, z;), and J is a Bessel function. The
allowed values of n for a helix consisting of u subunits
(e.g., proteins) per repeat distance along the ¢ axis (the
c-repeat unit [4]) consisting of » turns of the helix (a u,
helix) are determined by the helix selection rule

| = nv + mu, 3)

where m is another integer. Thus, we see that for a given
layer line /, the allowed values of n and m may differ only
by u and v, respectively [3] (where the differences have
opposite signs). Since the azimuthal dependence of each
term in the expression (1) for the intensity on a layer line is
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expli(n — n')], each term will have an integral multiple
of u-fold azimuthal symmetry.

The structure determination problem in so-called
“diffract-and-destroy” experiments with an x-ray free
electron laser (XFEL) [5] is at least superficially quite
distinct. In that case, reproducible particles are injected
into an XFEL beam in completely random 3D orientations,
and would not therefore in general be expected to show the
usual layer-line structure of an oriented helix. Yet we show
in the following that appropriate computational processing
of the ensemble of such diffraction patterns enables the
reconstruction of just such a fiber diffraction pattern.

Because of the randomness of the 3D orientations, the
natural choice for a reciprocal-space coordinate system in
this case is the spherical rather than the cylindrical one. A
way to perform structure determination in that case is via
the determination of the average over a large number of the
measured diffraction patterns of the angular correlations of
their intensities [6]. This is quite similar to a method
proposed earlier [7] for the extraction of structural infor-
mation from an ensemble of randomly oriented identical
molecules in solution. From the average over all measured
diffraction patterns of angular autocorrelations of the mea-
sured intensities on a resolution ring of radius ¢, it is
possible to extract [6,7] an orientationally independent
quadratic function

B (q) = ZIzM(Q)ILM(‘I) 4)
M

of the spherical harmonic coefficients I;,,(g) of the scat-
tered intensity distribution in 3D reciprocal space (L and M
are the usual angular momentum quantum numbers). At
least in the case of regular viruses, which Caspar and Klug
[8] have suggested tend to be either icosahedral or helical,
it is possible to find the 3D distribution of scattered inten-
sities of a single particle from diffraction patterns of ran-
dom particle orientations, as expected to be measured in
above-mentioned experiments with an XFEL.

In the case of an icosahedral particle [9], the spherical
harmonic expansion coefficients may be written as
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ILM(CI) = gL(Q)aLM’ (5)

where the g;(g) is a set of (real) icosahedral harmonic
expansion coefficients and ay,, is a set of real coefficients
calculable from a stipulation of the point group symmetry
(e.g., Ref. [10]). Substitution of Eq. (5) into Eq. (4) yields

B.(q) = g3 (q). (6)

Consequently, one may deduce the magnitudes of the
icosahedral harmonic expansion coefficients from the
square roots of the B;(g)’s. The signs of the quantities
g1.(¢) may be determined from quantities related to the
so-called “‘ring triple correlation (RTC) function™ [11]

Cs(q. A¢) = (I(q. $)*1(q,  + Adp))pp @)

calculable from the intensities (g, ¢) of resolution ring ¢
and azimuthal angle ¢ in the measured diffraction patterns.
As with the ring autocorrelation function [12] used to find
B, (q), due to the randomness of particle orientations over
the ensemble of diffraction patterns [6,7], the correlation
function on the left-hand side does not depend on the
particular value of ¢ chosen. With a full knowledge of
the amplitudes and phases of the quantities g; (g), the 3D
distribution of scattered intensities from a single particle
may be found via

Iq) =D 2(g)1.(6, p), (8)
L

where the quantities I, (6, ¢) are the so-called “icosahe-
dral harmonics” defined by

I.(0,¢)= ZaLMYLM(er b). ©))
M

In the case of a helical particle, such as a helical virus,
the same problem of the sum over M in Eq. (4) may be
overcome by a different argument. Since the allowed val-
ues of n differ by at least u, if we take the { axis of the
spherical coordinate system also to be parallel to the helix
axis, there will be no values of M (for the scattered inten-
sity) between 0 and *u on any layer line. But M (the same
quantum number in a spherical coordinate system with the
same { axis) cannot take values of =u until L becomes
equal to at least u. In the case of a tobacco mosaic virus
(TMV), which is a 495 helix, this means that from the
properties of angular momenta, for all values of L up to
L = 48 needed to describe the diffraction volume up to a
resolution of about 12 A, the only permitted value of M is
zero. The 3D scattered intensity distribution of a helical
virus may be found by first finding the spherical harmonic
expansion coefficients of a single repeat unit of height c,
which in the case of a TMV is 69 A. In general, for a particle
of radius R, a diffraction volume up to a reciprocal-space
radius g, may be calculated with the use of angular
momentum quantum numbers up to L., where [13]

Linax = qmaxR- (10)

In the case of a TMYV, the radius R may be taken to be 34.5 A,
half the c-repeat length in the direction of the ¢ axis and
about 100 A in the (the helix radius) direction perpendicular
to this axis. Thus, the use of angular momentum quantum
numbers up to L., = 49 allows the accurate calculation of
the diffraction volume up to ¢pmax = Lmax/ R, or until at least
Gmax = 0.5 A7 e, a real-space resolution of 277/ g =
12 A, if sampled at the layer planes (which is what the layer
lines of fiber diffraction become in 3D reciprocal space).
Since the diffraction volume of an entire helical virus is just
that of a single c-repeat unit sampled at values of ¢ permit-
ted by a “shape transform™ factor due to repeated units of
three helical turns of a single TMV particle, it follows that
the diffraction volume of a helical virus may be determined
to a resolution of 277R /u by including only the M = Oterm
in Eq. (4). That is, up to a resolution of about 12 A, the 3D
“diffraction volume” from a TMV has perfect azimuthal
symmetry.

If only the M = O term need be included in Eq. (4), we
may determine a 3D diffraction volume up to this resolu-
tion limit from

I(@) = X 110(@)Y10(6, ¢), (11)
L

with the magnitudes of the (real) coefficients I;,(g) deter-

mined by
[110(q)] = VBL(LI’ q), (12)

and their signs determined as above from the RTC function
[11]. Once an oversampled [14] diffraction volume of a
single particle has been determined from Eq. (11), the
electron density of the particle that gave rise to it may be
determined by an iterative phasing algorithm, e.g., Ref. [15].

B;(q) and T,(g) may be extracted from the averages
over all measured XFEL diffraction patterns (from random
particle orientations) of the angular autocorrelation func-
tion [7,9] and the RTC function [11]

Cylq, Ag) = f T (@Pilcos(Ad)l  (13)
where

Ti(q) = Y. G(L0;, Ly0; LOM 1 o(@)]1,0(q) 10(q). (14)
L,L,

and G is a Gaunt coefficient.

For the purposes of an initial proof of principle, we
simulated these quantities as follows. The relationship
between the azimuthally symmetric cylindrical harmonic
expansion coefficients Iy(R, {;) and the corresponding
spherical harmonic expansion coefficients I;y(g) of the
same 3D intensity distribution is

IR, &) = Y 11o(@)PL(41/ ), (15)
L
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where ¢ = 4/R* + {7, and P, is a Legendre function. Now

Iy(R, &) = Y G,(R, £)G(R, &) (16)

and so is calculable from the atomic coordinates according
to Eq. (2). One may calculate the spherical harmonic
expansion coefficients by inverting the equation

Io(R, 2) = ;ILOI:Q<: Ve o)|paero. an

The quantities I;4(g) may then be used to calculate By (g)
from Eq. (4) with the single term M = 0 on the right-hand
side and T, (g) from Eq. (14).

Assuming that B; (¢) and T, (q) are the only quantities
known (as from a real XFEL experiment), we recovered
the magnitudes of the (real) spherical harmonic expansion
coefficients I;(g) from Eq. (12). From the form of this
equation, it is clear that the magnitudes of the T (g)’s will
be sensitive to the signs of the 1;((g) [11]. Consequently,
these signs may be recovered by optimization of the
T:(g)’s Eq. (14). The recovered I;,(q) coefficients were
then used to generate a 3D diffraction volume from
Eq. (11). This diffraction volume will have contributions
from only the azimuthally symmetric M = 0 terms up to a
maximum value of the scattering vector corresponding to a
resolution of about 12 A. A slice through this diffraction
volume passing through the origin of reciprocal space and
parallel to the ¢ axis will be expected to be identical to a
fiber diffraction pattern and consist of the series of layer
lines, as indeed appears to be the case (Fig. 1).

This is quite a remarkable result. Using true fibers, the
structure of a TMV has been determined up to a resolution
of 2.9 A [16]. However, attempts to align particles by the
other means such as the electric fields of powerful lasers,
flow alignment, etc., have encountered the obstacle of the
entropic tendency to disorder at any finite temperature
[17]. What we have demonstrated here is the ability to
produce a near-perfect fiber diffraction pattern of a TMV up
to a resolution of about 12 A by postprocessing of diffrac-
tion patterns from particles completely randomly oriented
in 3D. This opens the way to the use of fiber diffraction
methods for structure solution of particles prepared in ran-
dom orientations, e.g., single particle diffract-and-destroy
experiments with an x-ray free electron laser without the
need to form an oriented bundle in the form of a fiber.

The key to this result is that up to about 12 A resolution,
the distribution of scattered intensities of a single c-repeat
unit of a TMV is describable by a spherical harmonic
expansion with angular momentum quantum number
L < 49. However, on the layer planes, the magnetic quan-
tum number may only take on possible values of 0, £49,
etc. Since the properties of angular momenta require that
M = L, the only permitted value of M is zero up to this
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FIG. 1. Fiber diffraction pattern of a TMV (with intensities on a
logarithmic scale) recovered from simulations of quantities ex-
pected to be measured in an XFEL diffract-and-destroy experiment
from individual viruses in completely random 3D orientations.
The axes are reciprocal-space coordinates in units of A~

resolution. Up to this resolution, therefore, the intensity is
azimuthally symmetric, exactly as in fiber diffraction of a
TMV. What is more, with this choice of axis, since there
is only a single value of M in the summation in the right-
hand side of Eq. (4), the magnitudes of the I;((q)
coefficients may be determined directly from the square
roots of the experimentally accessible quantities By (q, g)
and their signs determined by optimizing the other
experimentally determinable quantities, 7;(q) [I1].
Consequently, the entire 3D diffraction volume of a single
particle may then be reconstructed from Eq. (11). A low
resolution fiber diffraction pattern is simply a slice through
this volume.

It should be noted that B;(g, ¢) is an orientationally
independent quantity (it is a result of calculating the aver-
age of the angular correlations over all measured diffrac-
tion patterns from random particle orientations). On the
other hand, the values I;,,(q) of the spherical harmonic
expansion coefficients of the diffraction volume do depend
of the choice of axes. This means that the relationship (4) is
valid for any choice of {-axis orientation, and allows the
freedom of choice of orientation of this axis for the defi-
nition of the expansion coefficients I;,,(g). Hence, it is
possible to extract the diffraction volume of a single par-
ticle orientation from the angular correlations of the inten-
sities over a large number of completely random particle
orientations. Consequently, although the quantity B, (q) is
determined experimentally by the scattering from a large
number of completely randomly oriented particles, its
value may be determined by assuming all particles to be
perfectly aligned with respect to an arbitrary orientation. In
reconstructing the spherical harmonic expansion coeffi-
cients I;,,(g) from B/ (q), the expansion coefficients may
therefore be defined with respect to the same ¢ axis whose
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FIG. 2 (color online). Real-space image of a portion of a TMV
recovered by an iterative phasing algorithm from an oversampled
[14] low-resolution 3D diffraction volume generated from just
the M = 0 components of the spherical harmonic expansion
coefficients recovered from quantities expected to be calculated
from the ensemble of XFEL diffraction patterns from random
orientations of the virus.

direction may be chosen for computational convenience.
This is equivalent to computational alignment. The same
principle has already been demonstrated [9] in the recon-
struction of the diffraction volume and hence structure of an
icosahedral virus from simulated XFEL diffraction patterns
from random particle orientations. In that case, the icosa-
hedral particles’ diffraction volume is oriented with the
fivefold axis along {. In the case of a helical particle, by
choosing the ¢ axis parallel to the helix axis, one recon-
structs the diffraction volume of the helix with its axis along
{. With this choice of axis, up to a resolution of about 12 A,
or a magnitude of the angular momentum quantum number
L of about 48, M = 0 is the only permissible value of the
magnetic quantum number. This allows the determination
of the magnitudes and signs of the only (real) nonzero
values of the spherical harmonic expansion coefficients of
the diffraction volume in this preferred orientation.

The ultimate aim is to reconstruct the 3D real-space
structure of the virus. Accordingly, we attempted to
recover the 3D real-space structure from the reconstructed
3D diffraction volume by means of an iterative phasing
algorithm [15]. The result is shown in Fig. 2.

The essential features of the structure of a TMV are
correctly reconstructed, such as the tubular shape with a
central bore and the helical grooves on the outer surface of
the virus. Although the image may not appear of quite 12 A
resolution, this limitation must lie in the particular phasing
algorithm used, since the fiber diffraction pattern of a TMV
is calculable up to this resolution. Indeed, for the final
step of going from a recovered fiber diffraction pattern to
a real-space image, a standard method of fiber diffraction
may be used, which is known to be able to reconstruct a
real-space image to the full extent of the diffraction data,

although such methods [2,18] require additional informa-
tion such as diffraction data from a heavy-atom derivative,
or low-resolution information from, e.g., electron micros-
copy. The advantage remains over pure electron micros-
copy methods used for example to determine the structure
of C nanotubes [19], that the necessity to exactly align the
fibers is eliminated.

Of course, since we have demonstrated the ability to
reconstruct a fiber diffraction pattern (Fig. 1) from quanti-
ties extractable from data measurable in a diffract-and-
destroy XFEL experiment on particles randomly oriented
in 3D, the possibility also exists of structure determination
from this reconstructed fiber diffraction pattern by standard
methods of fiber diffraction (e.g., Ref. [18]). As with the use
of complementary information from a heavy atom deriva-
tive or electron microscopy in standard methods of fiber
diffraction, the method proposed here could be used as a
starting point to the determination of a helical structure to
higher resolution by standard methods of fiber diffraction.
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