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The rate of curvature-driven grain growth in polycrystalline materials is well known to be limited by

interface dissipation. We show analytically and by simulations that, for systems forming modulated phases

or nonequilibrium patterns with crystal ordering, growth is limited by bulk dissipation associated with

lattice translation, which dramatically slows down grain coarsening. We also show that bulk dissipation is

reduced by thermal noise and that this reduction leads to faster coarsening behavior dominated by

interface dissipation for a high Peierls-Nabarro barrier to dislocation motion and high noise. Those results

provide a unified theoretical framework for understanding and modeling polycrystalline pattern evolution

in diverse systems over a broad range of length and time scales.
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Polycrystalline patterns are observed in very diverse
systems including crystalline solids [1], colloidal systems
[2,3], various spatially modulated phases of macromolec-
ular systems such as diblock copolymers [4,5], and non-
equilibrium (NE) dissipative structures [6]. When grain
boundaries (GBs) between domains of different crystal
orientation are mobile, those patterns generally coarsen
in time to reduce GB length or area by elimination of
smaller grains. This coarsening behavior has been exten-
sively studied because of its practical importance for engi-
neering polycrystalline materials [7] and its fundamental
relevance for our general understanding of nonequilibrium
ordering phenomena.

The two-dimensional (2D) ordering dynamics of modu-
lated phases and NE patterns has been investigated theo-
retically [8–16] in the framework of model equations of the
general variational form

p@2t c þ �@tc ¼ �ð�r2Þn �F
�c

þ �; ðp; n ¼ 0 or 1Þ;
(1)

where c is an order parameter appropriate to each system
that can be globally conserved (n ¼ 1) or nonconserved
(n ¼ 0), and � is a noise uncorrelated in space and time
with a variance determined by the fluctuation-dissipation
relation h�ð ~r; tÞ�ð~r0; tÞi ¼ 2�Tð�r2Þn�ð~r� ~r0Þ�ðt� t0Þ.
The form (1) ensures that the system relaxes to a global
minimum of the Lyapounov functionalF corresponding to
the lattice ordered state. Equation (1) has also emerged as a
fruitful computational framework—the phase-field-crystal
(PFC) approach [17,18]—to model polycrystalline materi-
als on diffusive time scales with c interpreted as the
crystal density field. While Eq. (1) has been traditionally
studied for purely relaxational (p ¼ 0) dynamics [8–17],
propagative (p ¼ 1) wavelike dynamics have also been

introduced in the PFC context to mimic phonon-mediated
relaxation of the strain field [18].
Experimental studies of modulated phases [4] and exten-

sive computational studies of Eq. (1) have shown that the
characteristic grain size of 2D hexagonal lattices [13–16]
grows �tq. The exponent q is typically much smaller than
the q ¼ 1=2 value expected for ‘‘normal grain growth’’ in
polycrystalline materials [19], and depends on parameters
and noise strength [15,16]. While there have been theoreti-
cal attempts to explain those exponents for roll patterns
[9–12], the origin of this sluggish (low q) coarsening
kinetics is still poorly understood for two-dimensional
lattices with crystal-like ordering.
In this Letter, we show that the sluggish ordering dy-

namics of 2D crystal lattices results from the subtle effect
of ‘‘bulk’’ dissipation. To highlight the origin of this effect,
consider for simplicity the case of nonconserved dynamics
(the same effect is present for conserved dynamics). For
this case, Eq. (1) implies that

d

dt
½F þ Ek� ¼ �

Z
d~r�ð@tc Þ2; (2)

where Ek � p
R
d~rð@tc Þ2=2 is the kinetic energy of pho-

nonlike modes. Since the relaxation of the elastic field is
fast compared to grain coarsening, it follows that
jdEk=dtj � jdF =dtj. Therefore the left hand side of
Eq. (2)� dF =dt, which is the rate of decrease of the total
excess GB free energy in the polycrystal. For solids, this
excess free energy is dissipated through GB motion during
grain growth. Importantly, grain growth has also been
shown to be accompanied by grain rotation [20–23].
However, for solids, this rotation does not produce any
dissipation in the grain interior owing to the Galilean
invariance of Newton’s second law, which governs the
motion of real atoms in a crystal. In contrast, for continu-
ous lattice patterns, ‘‘pseudo atoms’’ correspond to peaks
of the c field, whose evolution is governed by Eq. (1) that
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is not Galilean invariant. Hence grain rotation induces a
local lattice translation that makes @tc nonvanishing in the
grain interior, thereby contributing to the dissipation of the
GB free energy through the right hand side (rhs) of Eq. (2).
This ‘‘bulk’’ dissipation can influence the rate of grain
growth in addition to interface dissipation associated
with the c dynamics in GB regions. Our main finding is
that bulk rather than interface dissipation can dictate the
rate of grain growth for lattice patterns governed by Eq. (1)
in the limit of a small Peierls-Nabarro (PN) barrier
to dislocation motion and small noise. We also demonstrate
the existence of a nontrivial crossover from bulk- to
interface-dominated dissipation with increasing PN barrier
and noise strength.

To show this, we first solve analytically the problem of
the shrinkage of an embedded circular grain in a single
crystal matrix for n ¼ 0. In this analysis, we keep p
arbitrary to show explicitly that phononlike modes have a
negligible contribution, so that the p ¼ 0 and p ¼ 1 dy-
namics exhibit similar behaviors. We then validate this
solution and explore the coarsening behavior of multigrain
structures. We simulate both Eq. (1) and a modified version
of Eq. (1) with minimized bulk dissipation (MBD). The
latter is shown to yield a different coarsening behavior
dominated by interface dissipation representative of crys-
talline solids. Furthermore, for concreteness, we carry out
our simulations for p ¼ 1 and n ¼ 0 and use a PFC form
ofF ¼ R

d~r!, which favors a square lattice in 2D with the

choice [24,25]

!¼ c ½��þðr2þ1Þ2ðr2þ2Þ2�c =2þc 4=4��c : (3)

This model was recently shown to produce GBs with a
similar dislocation content as [001] tilt GBs in molecular
dynamics (MD) simulations of face-centered-cubic bicrys-
tals [26]. In the analogy with a crystal-liquid system, F is
the grand potential that is equal in the crystal and liquid
(c ¼ constant) phases for an equilibrium value of the
chemical potential� ¼ �eq [25], which depends generally

on � [27]. We note that T represents physically an effective
temperature in the PFC model since short-wavelength
fluctuations on the lattice scale are already partly
accounted for in the bare form of F . Here we choose the
values � ¼ �0:90 for � ¼ 0:12 and � ¼ �1:69 for � ¼
0:5. This choice ensures that the system remains inside the
stable solid region for both zero and finite noise values
studied here [27]. Since the height of the PN barrier scales

� expð�c=�1=2Þ where c is some constant (see, e.g.,
Ref. [12]), the height decreases rapidly with decreasing
�. For � ¼ 0:12, this height is very small so that curvature-
driven grain growth occurs at T ¼ 0, while for � ¼ 0:5 the
barrier is large enough to pin GBs that only become mobile
for finite T.

Embedded grain theory.—Consider a circular grain of
radius RðtÞ and misorientation �ðtÞ with respect to its

surrounding single crystal matrix. For small initial misor-
ientation �ð0Þ, grain rotation is geometrically necessary
under the assumption that the number of dislocations along
the GB is conserved, as highlighted by Cahn and Taylor in
the context of solids [21]. Since there are nd ¼ 2�R�=b
dislocations of Burgers vector magnitude b, this conserva-
tion condition implies that

RðtÞ�ðtÞ ¼ Rð0Þ�ð0Þ; (4)

and hence that the embedded circular grain rotates towards
larger misorientation as it shrinks. This rotation can also be
interpreted as a consequence of the geometrical coupling
between GB motion and a shear stress [21,28,29]. In
addition to Eq. (4), we need a dynamical equation to
prescribe the dynamics of both RðtÞ and �ðtÞ. This equation
can be obtained readily by evaluating each term in the
relaxation equation (2) for a circular grain. The time rate

of change of total GB energy is _F ¼ d½2�RðtÞ�ð�ðtÞÞ�=dt
where �ð�Þ is the energy per unit length of GB and the dot
denotes the derivative with respect to time. To evaluate
separately the contributions of interface and bulk dissipa-
tion, we write the integral on the rhs of Eq. (2) as the sumR ¼ R

I þ
R
B , where the interface contribution

R
I is eval-

uated over a thin annulus comprising the GB (of thickness
proportional to the dislocation core radius) and the bulk
contribution

R
B is evaluated over the entire embedded

grain area. Dislocations move radially inward by pure glide
at a velocity _R, and hence j@tc j � a�1 _R over an area a2

around each dislocation, where a is the lattice spacing.
Therefore, the total interface dissipation

R
I d~r�ð@tc Þ2 ¼

nda
2�ða�1 _RÞ2=m ¼ �2�R _R2�=ðmbÞ, where m is an Oð1Þ

dimensionless prefactor. This yields the expression for the
mobility Mð�Þ ¼ mb=ð��Þ for � � 1 in agreement with
the Cahn-Taylor prediction for solids [21] recently vali-
dated by MD simulations [29].
Next, to compute the bulk dissipation rateR

B d~r�ð@tc Þ2, we compute the dissipation rate per unit
area of a crystal field in uniform translation at velocity ~v
and then integrate the result over the entire grain area. In a
region in uniform translation, c ð~r; tÞ � c 0ð ~r� ~vtÞ, where
c 0ð ~rÞ is the equilibrium c field that minimizes F , and

hence @tc ¼ � ~v � ~rc 0. The dissipation rate per area of
crystal can therefore be written in the form �Kv2=Au:c:

where K � R
u:c: d~rðv̂ � ~rc 0Þ2 is computed over the area

Au:c: of one unit cell (u.c.). For a square lattice, Au:c: ¼ a2

and K is independent of the direction of v̂ relative to the
crystal axes, and reduces to K ¼ R

a
0

R
a
0 dx

0dy0ð@x0c 0Þ2
where x0 and y0 are the principal crystal axes. Since v ¼
r _� in each small region of a large rotating grain, where
r is the radial polar coordinate, the total bulk dissipation
rate is obtained by integrating �Kv2=Au:c: over the grain
area:

R
R
0 2�rdr�Kðr _�Þ2=a2 ¼ ��KR4 _�2=ð2a2Þ � 2�Ek.

Combining the above expressions for interface and bulk
dissipation, Eq. (2) becomes

PRL 110, 265504 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
28 JUNE 2013

265504-2



_R�þ R��
_� ¼ ��R _R2�=ðmbÞ � �KR4 _�2=ð4a2Þ; (5)

where we have neglected _Ek which can be shown to give a
negligible higher order contribution. Thus the p ¼ 0 and
p ¼ 1 dynamics in Eq. (1) yield the same grain rotation
dynamics. Finally, approximating the GB energy with a
Read-Shockley law �ð�Þ ¼ E0�ðAc � ln�Þ valid for
small �, and using the condition RðtÞ�ðtÞ ¼ Rð0Þ�ð0Þ that
nd is conserved, Eq. (5) yields a single dynamical equation
for RðtÞ that can be analytically solved. Its solution predicts
that the grain area (A ¼ �R2) decreases linearly in time
with a rate _A ¼ dA=dt given by

� a2=ð� _AÞ ¼ s1a
2=ðmbE0Þ þ s2KRð0Þ�ð0Þ=E0; (6)

where s1 ¼ 1=ð2�Þ and s2 ¼ 1=ð8�Þ, and the first and
second terms on the rhs correspond to interface and bulk
dissipation, respectively. Since b� a and m and K are
constants of order unity, Eq. (6) predicts that the ratio of
bulk to interface dissipation is �Rð0Þ=a � 1, implying
that _A is entirely dominated by bulk dissipation, which
holds for any lattice structure.

Embedded grain simulations.—To test Eq. (6), we simu-
lated embedded grains using Eq. (1) with F defined by
Eq. (3). We used a pseudospectral method described in
Ref. [30] with more details given in Ref. [27]. Figure 1
shows plots of grain area and R�=a versus time together
with a snapshot that highlights the structure of the GB,
consisting of dislocations with Burgers vectors described
by the Miller indices h11i and h10i. Accordingly, the grain
is approximately shaped as an octagon with four facets
made up of [11], ½�11�, ½1�1�, and ½�1 �1� dislocations, and four
others with [10], [01], ½�10�, and ½0�1� dislocations, respec-
tively. Figure 1(a) shows that _A is constant and depends on
both initial grain size and misorientation, and that R� is
constant; the number of dislocations is conserved until
dislocations annihilate during the final stage of grain col-
lapse. In Fig. 2, we compare quantitatively _A values
extracted from linear fits of A versus time plots (before
grain collapse) to the predictions of Eq. (6) extended to an
octagonal grain with two dislocation types: E0 ¼ ðE11

0 þ
E10
0 Þ=2 and ðmbÞ�1¼½ðm10b10Þ�1þðm11b11Þ�1�=2, where

s1 ¼ 1=ð4 ffiffiffi
2

p Þ and s2 ¼ 0:0368 are related to the perimeter
and area of an octagon and E11

0 and E10
0 are extracted from

fits of computed GB free energies to a Read-Shockley law
[27]. This comparison shows an excellent quantitative
agreement for � ¼ 0:12 and T ¼ 0 for two different �
values, confirming that inertia (p ¼ 1) is unimportant.
The comparison for � ¼ 0:5 with a large PN barrier shows
that bulk dissipation is still dominant for intermediate T
(T ¼ 0:0216). The slope of the curve predicted by Eq. (6)
fits well the simulations results, but the curve has a finite
intercept at the origin corresponding to a finite contribution
of interface dissipation. This contribution is negligible
for � ¼ 0:12 where the intercept merges with the origin.
For � ¼ 0:5 and larger T (T ¼ 0:0576), bulk dissipation

is reduced and the simulation data are no longer fitted
by the theory. Analysis of dislocation dynamics in the
simulations shows that this reduction results from ther-
mally activated dislocation reactions. Those reactions
reduce the number of dislocations, thereby allowing
the grain to shrink with less rotation and reducing the
contribution of bulk dissipation relative to interface
dissipation. Reduction of grain rotation by dislocation
reaction is also observed in MD simulations of grain
rotation [23].
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FIG. 1 (color online). Results of embedded grain simulations
for � ¼ 0:12 and T ¼ 0 showing normalized grain area (a)
and R�=a (b) versus time for two different initial grain
areas and six different initial misorientations. Grain rotation
is present (absent) for misorientation less (larger) than �15	.
(c) Order parameter 	 defined by Eq. (7) for the largest
area 7	 simulation showing the GB structure, with h11i
(h10i) dislocation cores appearing as elongated (circular)
blue patches, and the corresponding c field inside the square
region (inset).
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Grain growth simulations.—Next we simulated Eq. (1)
with p ¼ 1 and n ¼ 0 in large systems of 512
 512 unit
cells with periodic boundary conditions. We seeded in a
liquid a large number of small randomly oriented grains,
which crystallize into a very fine grain polycrystal. We then
characterized the coarsening of this polycrystal by mea-
suring the ordering scale 
S using the half width �k at

half peak of the structure factor Sðk; tÞ ¼ hc ð ~k; tÞc �ð ~k; tÞi
(fitted to a squared Lorentzian), where the angular brackets

denote averages over all orientations of ~k in the same
simulation [10,27]. Plots of 
S � �k�1 versus time in
Fig. 3 for simulations of Eq. (1) with � ¼ 0:12 and
T ¼ 0 yield a small coarsening exponent q � 0:22 as in
previous experimental [4] and computational [13–16] stud-
ies of 2D hexagonal lattices.

To test the hypothesis that this sluggish coarsening
kinetics results from bulk dissipation, we simulated a
modified MBD version of Eq. (1) where dissipation is
minimized in the bulk and localized at GBs. This is
achieved by the substitution � ! �hð	Þ in Eq. (1), where

	ð ~rÞ ¼ C
Z

d~r0 expð�j~r� ~r0j2=2�2Þjrc ð~r0Þj2 (7)

is a spatially varying order parameter directly analogous to
the conventional phase field for crystal ordering [31]. We
choose � ¼ a=2 and the normalization constant C such
that 	 is unity in ordered regions of the lattice and
decreases below unity in dislocation cores and GBs, as
illustrated in Fig. 1(c) for the embedded grain. The func-
tion hð	Þ given in Ref. [27] has limits hð1Þ ¼ � and
hð	Þ �Oð1Þ in ordered and disordered regions, respec-
tively, thereby allowing us to minimize the ratio of bulk

and interface dissipation by choosing � � 1. To test the
MBD dynamics, we first repeated the single embedded
grain simulations. The results in Fig. 2 (red stars) show
that the grain shrinkage rate becomes independent of initial
grain size and misorientation as in MD simulations [23].
This result is consistent with the theoretical prediction that,
for MBD, the second term on the rhs of Eq. (6) correspond-
ing to bulk dissipation is multiplied by � and hence
becomes negligible in the limit � � 1.
Next, we repeated the multigrain simulations with MBD

dynamics. The results in Fig. 3 show that MBD yields a
larger exponent q � 0:35 than q � 0:22 for standard PFC
dynamics [Eq. (1)], thereby demonstrating that bulk dis-
sipation significantly slows down the coarsening kinetics
even though grain rotation is more constrained in a com-
plex GB network. This conclusion is further supported by
the finding that grain rotation is more prevalent in MBD
than standard PFC simulations and by computing the ratio
of interface and total dissipation. This ratio decreases to a
small value with standard PFC dynamics but remains
approximately unity with MBD [27]. Finally, simulations
for � ¼ 0:5 show that the growth exponent increases mark-
edly with T, as expected from the reduction of bulk dis-
sipation by dislocation reactions. More important here than
the precise values of the exponents, which are not exactly
constant in time, is the demonstration of the key role of
bulk dissipation in the ordering dynamics of 2D lattice
forming systems.
The present results should be testable experimentally in

a wide range of systems forming modulated phases or NE
patterns with crystal ordering. They also highlight the
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FIG. 2 (color online). Comparison of theory for the octagonal
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(� ¼ 0:5) and simulations of Eq. (1) (symbols); the slopes
s2Ka=E0 are predicted by Eq. (6). The fitted intercept for the
green dashed line represents a finite contribution of interface
dissipation for intermediate noise. Red star symbols are for the
modification of Eq. (1) with minimized bulk dissipation (MBD),
which causes the grain shrinkage rate to become independent of
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101

102

103 104 105 106

s
/a

time

 = 0.1 T = 0.0576  = 0.50 (0.39)
 = 0.1 T = 0.0216  = 0.50 (0.31)
 = 0.1  = 0.12 (0.22)
 = 1.0  = 0.12 (0.22)

MBD1 (0.36)
MBD2 (0.35)

FIG. 3 (color online). Plot of ordering length 
S (�mean grain
size) versus time from simulations of Eq. (1) (parameters in
legends) and minimized bulk dissipation with � ¼ 0:12, � ¼ 8,
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 10�3 (� ¼ 6:3
 10�3) for MBD1 (MBD2);
T ¼ 0 when not given in the legend. Numbers in parentheses
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(dashed lines). Inset: orientation field computed using a wavelet
transform of c with a color bar ranging from �45	 to 45	 [27].
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necessity of reformulating the PFC dynamics for realisti-
cally modeling polycrystalline materials.
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