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Three-dimensional kinetic simulations of magnetic reconnection reveal that the electron diffusion

region is composed of two or more current sheets in regimes with weak magnetic shear angles � & 80�.
This new morphology is explained by oblique tearing modes which produce flux ropes while simulta-

neously driving enhanced current at multiple resonance surfaces. This physics persists into the nonlinear

regime leading to multiple electron layers embedded within a larger Alfvénic inflow and outflow.

Surprisingly, the thickness of these layers and the reconnection rate both remain comparable to two-

dimensional models. The parallel electric fields are supported predominantly by the electron pressure

tensor and electron inertia, while turbulent dissipation remains small.
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The energy release driven by magnetic reconnection is
important for a wide range of applications in space, labo-
ratory, and astrophysical plasmas [1]. In high-temperature
plasmas, reconnection involves a coupling between the
macroscopic sheared magnetic field and the kinetic scales
where the frozen-flux condition is violated within a
diffusion region. The present understanding is based on
a two-dimensional (2D) picture [2] in which the ions
decouple from the field on the ion inertial scale, while
electrons decouple within a much smaller layer where the
frozen-flux condition is broken by electron inertia and
nongyrotropic terms in the pressure tensor [3–6]. These
electron layers can become highly extended [7–10], indi-
cating an inherent coupling to the larger dynamics.

Extending these results to large three-dimensional (3D)
systems introduces a number of complications. First, the
3D structure of reconnection remains uncertain, since the
dynamics may proceed at multiple competing orientations
in both the linear and nonlinear regimes, leading to a
spectrum of interacting flux ropes [11–13]. Second, various
types of kinetic instabilities which are excluded in 2D may
drive turbulence in 3D and produce anomalous resistivity
or viscosity [3]. For example, lower-hybrid instabilities can
produce anomalous resistivity in certain regimes within
neutral sheets [14]. And in the strong guide field regime,
recent 3D kinetic simulations [15] of force-free current
sheets have reported a fast growing electron shear insta-
bility, resulting in strong turbulent viscosity and associated
broadening of the layer. However, the persistence of these
effects in large systems remains uncertain, due to the
limited spatial volume and relatively short time durations
considered.

In this Letter, we reexamine these guide-field regimes
using fully kinetic 3D simulations with volumes �300�
larger and durations over �12� longer than previously
considered [15], which is sufficient to distinguish between

transient effects and to allow coupling to 3D flux ropes
dynamics. We consider parameter regimes �e �
8�nT=B2 � 0:01 ! 0:2 where force-free current layers
are applicable and magnetic shear angles from� ¼ 28� !
180�. As discussed in Ref. [15], these weaker shear angles
are relevant to the solar corona [16,17], the solar wind
[18,19], and planetary magnetospheres [20–22]. Our
results reveal a number of striking differences with the
previous small-scale studies [15]. First, using a combina-
tion of linear theory and simulations, we demonstrate that
the dominant instability is collisionless tearing, with no
evidence of turbulent broadening in the electron layers.
The only clear exception is within very thin layers where
electron-ion streaming instabilities are triggered [23,24].
While these regions can drive localized bursts of turbu-
lence at early time, it appears these streaming instabilities
are difficult to maintain in large simulations due to the
strong electron parallel heating in low-� reconnection
[25]. Second, the fastest growing tearing modes occur at
oblique angles for regimes with weak magnetic shear
� & 80�. This has dramatic implications for the 3D struc-
ture, since these modes gives rise to oblique flux ropes
while simultaneously driving enhanced current at multiple
resonance layers.
This physics persists into the nonlinear regime and gives

rise to reconnection layers that are intrinsically 3D, with
multiple electron diffusion regions embedded within a single
ion-scale layer with Alfvénic inflow and outflow. While
secondary tearing is observed within the electron layers,
there is no evidence of the previously reported electron
shear instability [15] and the measured anomalous resistivity
remains small. As a consequence, the characteristic layer
thickness, pressure agyrotropy [26], and reconnection rate
all remain comparable to 2D simulations. The parallel elec-
tric field is balanced through the combined influence
of electron inertia and the electron pressure tensor, but
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with one important difference. While 2D symmetric recon-
nection layers require a nongyrotropic contribution to the
pressure tensor near the x-line [4–6], this symmetry con-
straint is removed in 3D, allowing temperature anisotropy
additional flexibility to break the frozen-flux condition.

We consider force-free current layers with B ¼
B0 tanhðz=�Þx̂þ B0½b2g þ sech2ðz=�Þ�1=2ŷ, corresponding

to a field of magnitude B0ð1þ b2gÞ1=2 which rotates by

an angle � � cos�1½ðb2g � 1Þ=ðb2g þ 1Þ� across a layer

with half-thickness �. Here bg is the relative magnitude

of the imposed guide field. The initial distributions are
Maxwellian with spatially uniform density n0 and tempera-
ture (Ti ¼ Te). The ion population is stationary while the
electrons have a net drift Ue to produce a current density
J ¼ �en0Ue consistent with r�B ¼ 4�J=c. We con-
sider the tearing stability of this configuration for an arbi-
trary wave vector k ¼ kxx̂þ kyŷ corresponding to oblique

angle � � tan�1ðky=kxÞ and resonance surface zs=� ¼
�tanh�1½ð1þ b2gÞ1=2 sin�� where F � k � B ¼ 0. In the

outer region, the magnetohydrodynamic model is used

to obtain an eigenmode equation [27] of the form ~c 00 ¼
ðk2 þ F00=FÞ ~c , where ~c ðzÞ is the perturbed flux function
at the oblique plane and k2 � k2x þ k2y. By combining the

approximate solutions for k� � 1 and k� 	 1 in the same
manner as Ref. [28], we obtain

�0 � lim
�!0

1
~c

�
d ~c

dz

�
zsþ�

zs��

 2

k�2
ð1þ b2gtan

2�Þ � 2k;

where �0 measures the drive for tearing perturbations [27].
Using the standard matching approach [13,29] to the
kinetic resonance layer gives

�

kvthe


 d2e�
0
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ffiffiffiffi
�

p
ls½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meTe=ðmiTiÞ

p � ; (1)

where vthe � ð2Te=meÞ1=2 is the electron thermal speed,

de � c=!pe is the electron inertial length, !pe ¼
ð4�e2n0=meÞ1=2 is the plasma frequency, and ls is the scale
length for variation in kk ¼ k �B=jBj given by

1

ls
� 1

k

�
dkk
dz

�
z¼zs

¼ cos2�� b2gsin
2�

� cos�ð1þ b2gÞ1=2
:

Since ! / k � Ue 
 0 in the resonance layer, the real
frequency vanishes and the modes are purely growing.
Tearing perturbations are unstable for �0 > 0 correspond-

ing to k� < kc� 
 ð1þ b2gtan
2�Þ1=2 and j�j< �c 


tan�1ð1=bgÞ. The shortest wavelength mode is k� 
 ffiffiffi
2

p
at � ¼ �c, while the most unstable modes are predicted

to be oblique when bg > bg;c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½2ðk�Þ2� � 1=2

p
.

For modes with k� 
 0:5 this gives bg;c 
 1:2 correspond-

ing to magnetic shear angles� & 80�. At this wavelength,
the theory predicts oblique growth rates that are only

�2% faster for bg ¼ 4, but the effect becomes stronger

for shorter wavelengths.
To test this theory, fully kinetic simulations were per-

formed using the VPIC code [30]. Unless otherwise stated,
all simulations have parameters vthe=c ¼ 0:21 and
!pe=�ce ¼ 2, where �ce ¼ eB0=ðmecÞ, which implies

�e � 8�n0Te=B
2 ¼ 0:18=ð1þ b2gÞ. Spatial scales are nor-

malized by either de or di ¼ deðmi=meÞ1=2 and time is
normalized by �ci¼eB0=ðmicÞ. Boundary conditions are
periodic in the x and y directions, while the z boundaries
are treated as a perfect reflecting conductor. A series
of 2D simulations were performed with fixed Lx ¼ 4��
corresponding to k� 
 0:5 to independently measure the
tearing growth rate at each resonance surface. This was
done by rotating the initial 1D equilibrium about the z axis
by an angle � in order to select a resonance surface.
As illustrated in Fig. 1, a range of guide fields bg¼0!4,

mass ratios mi=me ¼ 1–1836, and scale thicknesses were
considered. For this range of parameters, the instability is
always localized about the resonance surface and produces
magnetic islands consistent with tearing. The measured
growth rates in Fig. 1 are within a factor of �2 of Eq. (1)
for the angular dependence. However, the decrease in
the growth rate with increasing guide field is somewhat
weaker in the simulations than predicted by Eq. (1). More
importantly, the simulation growth rates at oblique angles
are larger than Eq. (1) for stronger guide fields bg * 1.

This trend is opposite that for the Harris equilibrium [13],
where diamagnetic drifts may strongly influence the
stability [13,31].
These 2D simulations demonstrate that tearing is the

dominant instability, rather than the previously reported
shear instability [15]. The only possible exception to
the latter is for very low �e < 0:01 regimes and narrow
layers � & de (explored, but not shown), where the simu-
lations feature a weaker growing instability with k > kc
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FIG. 1 (color online). Comparison of tearing mode growth
rates from Eq. (1) (black line) with measured value from 2D
kinetic simulations (diamonds) as a function of oblique angle �
with k� ¼ 0:5 fixed, and for the different guide fields, mass
ratios, and initial layer thicknesses. All growth rates are normal-
ized by �0, the theoretical value at � ¼ 0.
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corresponding to �0 < 0 where tearing should be stable.
However, in contrast to the shear instability, this mode
is localized about the resonance surfaces and produces
magnetic islands, but is too weak to play any significant
role for the parameters in this Letter.

While Eq. (1) roughly captures the magnitude and range
of angles for the tearing instability, the oblique modes in
the simulations grow even faster than predicted for guide
fields bg > 1. Since this physics persists into the nonlinear

regime, it has immediate implications for the 3D structure
of the diffusion region. To demonstrate this effect, we
compare small 3D simulations (Lx ¼ Lz ¼ 4��) with
bg ¼ 2:5 and the same initial conditions, and only change

the system sizeLy. The simulation in Fig. 2(a) withLy ¼ 8�

only permits a single resonance layer at zs ¼ 0 and thus leads
to a current density consistent with previous 2D models. In
contrast, the simulation in Fig. 2(b)withLy ¼ 46:9� permits

unstablemodes at zs ¼ 0,�0:86� corresponding to� ¼ 0�,
�15�. Initialized with a weak seed, the two oblique modes
dominate the evolution leading to enhanced current density
at the respective resonance layers as shown in Fig. 2(b).

The persistence of this physics into the nonlinear regime
is responsible for driving electron diffusion regions with
multiple current sheets. However, the existence of other
competing instabilities may complicate this picture. To
examine this possibility, an additional 3D simulation was
performed with the same parameters of Figs. 2(a) and 2(b),
but with system size Lx ¼ 3:8L such that �0 < 0 for
all modes. In this case, there was no evidence of any
instability growth (not shown). Next, we performed a
series of 3D simulations for electron-scale current sheets.

The fluctuation spectrum is given in Fig. 2(c) for one
example with mi=me ¼ 1836, � ¼ 2de, and Lx ¼ Ly ¼
24�� to permit �6 tearing modes with k� 
 0:5. The
dominant fluctuations are well bounded by the marginal
tearing criterion �0 > 0 (black lines). The only clear evi-
dence of additional instabilities occurs when the streaming

exceeds the Buneman threshold [23,24] of Uey >
ffiffiffi
2

p
vthe

(for Ti ¼ Te), which requires very thin layers � <

de=½2�eð1þ b2gÞ�1=2. While the example in Fig. 2(c) is

slightly below this threshold, reducing the layer thickness
to � ¼ de results in a strong Buneman instability that
broadens the layer (not shown), but over longer times the
tearing modes still dominate.
To understand how these results apply to larger 3D

systems, we performed four simulations with varying guide
field bg ¼ 0:5, 1, 2.5, 4 for mi=me ¼ 100, � ¼ 0:5di, and

system size 40di � 40di � 15di corresponding to 2048�
2048� 1024 cells and�1012 particles. Consistent with the
results in Fig. 1, the cases with bg < bg;c 
 1:2 did not

produce multiple electron layers in the diffusion region.
Because of limited space, here we focus on the cases
with bg > bg;c. The bg ¼ 2:5 simulation is dominated by

oblique flux ropes as shown in Fig. 3(a) leading to diffusion
regions with multiple electron current layers as illustrated
in Fig. 3(b). Notice that the electron current sheets are
oriented at angles � 
 �11� roughly consistent with the
fastest growing oblique tearing modes [see Fig. 1(c)],
suggesting that the 3D morphology is determined by
similar physics. This is surprising since the profiles have
changed dramatically from the initial condition. However,
the total magnetic shear across the layer is fixed and the
fastest growing modes in Fig. 1 occur at roughly the same
oblique angles in both ion and electron-scale layers, which
may explain the persistence of this angle.
The diffusion region illustrated in Fig. 3(b) consists of

two electron layers embedded within a single ion layer
which seems to be the most common configuration for
bg * bg;c regimes. However, it is possible to find examples

with a single electron layer, and still others with three or
more electron layers. Two additional examples are illus-
trated in Fig. 4 for the strongest guide field simulation
bg ¼ 4 (�e 
 0:01) at the two times indicated. This simu-

lation has the same domain size as in Fig. 3 but with a finer
spatial grid (2048� 2048� 1536) and �1:5� 1012 par-
ticles. The current density in Fig. 4(a) features two electron
layers each with transverse scale 
 0:45de (measured by
half-width at half-maximum) while the example shown in
Fig. 4(b) consists of three layers with similar thickness. In
both cases, the ion streamlines (white) shows a clear inflow
and outflow associated with reconnection. Measured in
terms of the local electron gyroradius, the half-thickness
of these layers is ð2:5–3:5Þ�e, which is comparable to the
layers near the x-line in 2D. The peak agyrotropy [26]
is 0.12, which is slightly larger than the corresponding
2D simulation.
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FIG. 2 (color online). Comparison of current density J at
t�ci ¼ 16 from two 3D simulations with initial conditions bg ¼
2:5, mi=me ¼ 25, � ¼ 0:5di, �e ¼ 0:025, and with (a) Ly ¼ 8�

to allow a single resonance surface at zs ¼ 0 and (b) Ly ¼ 46:9�

to allow three resonance surfaces zs ¼ 0, �0:86�. (c) Spectrum
of j	B2

z=B
2
0j from a simulation with � ¼ 2de, mi=me ¼ 1836,

bg ¼ 2:5, and system size 24��� 24��� 3��. The observed

fluctuations are predominantly for wave vectors with �0 > 0
where tearing is unstable (black).
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To examine the dissipation physics, each term in the
electron momentum equation was evaluated and time aver-
aged over an interval 1=�ci (corresponding to 625 time
slices). The y component of each term is shown in Fig. 4(c)
across the layer as indicated. The peak nonideal electric
field (red) inside the layers is balanced predominantly
by the divergence of the pressure tensor r � Pe (green).
For the example shown, there is a strong cancellation
between r � Pe and the inertial term (blue), but for other
slices there are regions in which the inertial terms domi-
nate. Separating quantities into a mean and fluctuating
component, the anomalous resistivity (purple) arising
from h	ne	Eyi is typically quite small &5%.

The results in Fig. 4(d) were computed in the same
manner, but for the parallel component of the momentum
balance across the three electron layers as indicated in
Fig. 4(b). The parallel electric field Ek is supported by

the combined influence of electron inertia and the pressure
tensor. To understand this further, it is useful to decompose
the pressure tensor into a portion that is cylindrically

symmetric (i.e., gyrotropic) about the local magnetic
field Peg � Pe?Iþ ðPek � Pe?Þbb so that we can write

ðr � PegÞk ¼ @kPek � ðPek � Pe?Þ@k lnjBj, where @k �
b � r and b � B=jBj. Evaluating these contributions
from Pek � b � Pe � b and Pe? � ½TrðPeÞ � Pek�=2 dem-

onstrates that in most regions ðr � PeÞk 
 @kPek with

significant differences occurring only inside the electron
layers where the pressure tensor is nongyrotropic, similar
to recent spacecraft observations [32]. While intense
streaming is clearly evident, reconnection drives strong
parallel heating in low-� regimes [25], resulting in layers
that are marginally below the Buneman threshold. There is
no evidence that shear instabilities broaden these layers or
alter the dissipation physics. Instead, it appears the electron
pressure tensor provides ample flexibility for breaking the
frozen-flux constraint in low �e * 0:01 regimes.
Despite the rich 3D dynamics, the energy conversion

time scale is nearly the same as 2D. To quantify the
3D reconnection rate, one leading idea [33] involves com-
puting hEki ¼

R
Ekds along field lines passing through the

diffusion region back into an ideal region where Ek ¼ 0.
Applying this approach is complicated by the fact that the
magnetic field lines are chaotic and it is difficult to identify a
transition back into an ideal region. Instead, we selected 20
seed points along the central electron sheet in Fig. 4(b) and
integrated Ek along these magnetic field lines once through

the system. The resulting average hEki 
 0:023VAB0=c is

very close to the corresponding 2D simulation near the
x-line Ek 
 0:025VAB0=c, indicating the rates are nearly

the same. However, this does not imply that all details of
the energy conversion are the same. In particular, the 3D
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FIG. 4 (color online). (a) Current density J within the diffusion
region and ion streamlines (white) for the large 3D simulation
with mi=me ¼ 100, bg ¼ 4, and �e 
 0:01 at t�ci ¼ 44.

(b) Example of a diffusion region with three electron layers
from the same simulation at later time t�ci ¼ 65. (c) Terms in
the time-averaged electron momentum equation evaluated along
the line indicated in (a) along with the anomalous resistivity
h	ne	Eyi. (d) Dominant terms balancing the parallel electric

field Ek along the line indicated in (b). In both (c) and (d) all

terms are normalized by n0VAB0=c where VA ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�min0

p
.

(a)

(b)

FIG. 3 (color online). (a) Three-dimensional structure of
reconnection for the large simulation with mi=me ¼ 100, bg ¼
2:5, �e ¼ 0:025 at t�ci ¼ 36. Shown is an isosurface of particle
density, colored by the current density along with sample mag-
netic field lines (yellow). Cutting planes also show the current
along with streamlines of the in-plane ion flow velocity (white).
(b) Closeup of the electron diffusion region along with sample
streamlines of the current density (red).
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dynamics drives turbulence characterized by a power law
with a break at the electron scale and there is preliminary
evidence that more electrons are accelerated into the ener-
getic tails. Details of these results will be reported in future
publications.
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