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We provide direct measurements of the boundary layer properties in highly turbulent Taylor-Couette

flow up to Re ¼ 2� 106 (Ta ¼ 6:2� 1012) using high-resolution particle image velocimetry and particle

tracking velocimetry. We find that the mean azimuthal velocity profile at the inner and outer cylinder can

be fitted by the von Kármán log law uþ ¼ 1=� lnyþ þ B. The von Kármán constant � is found to depend

on the driving strength Ta and for large Ta asymptotically approaches � � 0:40. The variance profiles of

the local azimuthal velocity have a universal peak around yþ � 12 and collapse when rescaled with the

driving velocity (and not with the friction velocity), displaying a log dependence of yþ as also found for

channel and pipe flows.
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Taylor-Couette (TC) flow is one of the paradigmatical
flows in physics of fluids next to Rayleigh-Bénard (RB)
convection, channel, flat plate, and pipe flow. It consists of
two rotating coaxial cylinders shearing a fluid in between
the cylinders, see Fig. 1. For only inner cylinder rotation,
the Reynolds number Re ¼ !iriðro � riÞ=� quantifies the
driving of this system. It is closely connected to the Taylor
number Ta¼ 1=4ð1þ�=2

ffiffiffiffi
�

p Þ4ðro�riÞ2ðriþroÞ2!2
i =�

2,

the ratio of centrifugal forces to viscous forces. Here, ! ¼
u�=r is the angular velocity component, r the radius, � the
kinematic viscosity, � ¼ ri=ro the radius ratio, and i and o
subscripts denote quantities related to the inner and outer
cylinder, respectively. For increasing Re, the system is first
dominated by coherent structures [1] whose length scale is
of similar size as the gap width. For further increasing Re,
turbulence develops in the bulk at length scales between
the integral and the Kolmogorov scale while the boundary
layers (BL) are still of laminar type. This regime, in
which the flow has a turbulent bulk and the boundary layers
are of Prandtl-Blasius type, is called the classical regime
[2]. By further increasing Re, the system enters the
so-called ultimate turbulent state in which also the bound-
ary layers have turned turbulent [3–6]. Note that vortical
structures appear at the first transition above a critical Ta
[7] and continue to persist within the ultimate regime [8,9].
Based on global transport measurements, the ultimate
regime of turbulence sets in at ReðTaÞ � 104ð108Þ
[8,10,11].

The coexistence of a laminar-type boundary layer and
turbulent bulk in classical turbulent RB convection has
been well established from numerous experimental and
numerical investigations [12–15]. This is also the case
for the classical regime in TC flow [8,16–19] and the
transition regime to ultimate TC flow [20–22]. Recently,
a direct measurement [23] of the mean temperature profile

close to the wall in the ultimate RB state revealed loga-
rithmic behavior in the ultimate regime. For pipe, flat plate,
and channel flows, numerous experiments have revealed
the existence of a log layer for the velocity and its variance,
see, e.g., Refs. [24–28].
Neither for TC nor for RB had there been any direct and

systematical measurement of the velocity BL in the highly
turbulent ultimate state due to the experimental difficulties.
Assuming a logarithmic velocity profile in the boundary
layers for highly turbulent TC flow, and matching the mean
velocities at midgap, Lathrop et al. [10,29] obtained a
dependence of the global torque and the Re, which agrees
well with the torque measurements in the ultimate
turbulence regime [10,29,30]. Only recently were direct
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FIG. 1 (color online). Sketch of the vertical cross section of the
T3C [39]. The flow is illuminated from the side in the horizontal
plane using a laser, and the flow is imaged from the top using a
high-resolution camera. Top-right inset: schematic top view of
different regions inside the gap: IC (inner cylinder), OC (outer
cylinder), and BL (boundary layer). Measurements were done at
midheight.

PRL 110, 264501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
28 JUNE 2013

0031-9007=13=110(26)=264501(5) 264501-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.264501


measurements on BLs conducted by van Hout and Katz
[20] for Ta up to 2� 109, where they focused on the effect
of counterrotation and found that the von Kármán constant
depends on the angular velocity ratio !o=!i.

In this Letter, we report the direct systematical experi-
mental investigation of the boundary layer properties for
very high Ta from Ta ¼ 9:9� 108 to Ta ¼ 6:2� 1012

using high-resolution particle tracking velocimetry (PTV)
and particle image velocimetry (PIV) [31–33] with an
unprecedented spatial resolution down to � 10 �m. We
focus on the case of inner cylinder rotation, and examine
the boundary layer properties as a function of Re (Ta) in the
ultimate turbulent TC regime.

It was mathematically found [34] from the Navier-
Stokes and continuity equations that J! ¼ r3ðhur!iz;�;t �
�@rh!iz;�;tÞ is strictly conserved in TC flow. Here hXiz;�;t
represents axial, azimuthal, and time averaging of X, and
ur is the radial velocity. This transport quantity is indepen-
dent of r; any flux going through an imaginary cylinder
with radius r also goes through any other imaginary
cylinder, or mathematically @rJ! ¼ 0. This flux can be
measured locally [30,35] but also globally [10,36–38] by
measuring the torque needed to sustain the constant veloc-
ity of the cylinders. The torque T is related to the dimen-
sionless torque G and to J! as follows:

G ¼ T
2�‘��2

¼ J!
�2

; (1)

where � is the density of the fluid, and ‘ the height of the
cylinders. We can further relate these quantities to the wall
shear stress �w, the friction velocity u�, and the viscous
length scale 	� at the inner cylinder wall:

�w;i ¼ T =2�r2i ‘; (2)

u�;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�w;i=�;

q
(3)

	�;i ¼ �=u�;i: (4)

Note that as J! is conserved radially, it is the same at both
cylinders, and using Eq. (1), also the torque T at both
cylinders is the same. Consequently, �w, u�, and 	� are
different at the inner and outer cylinder, and the following
relations hold:

�w;i=�w;o ¼ 1=�2; (5)

u�;i=u�;o ¼ 1=�; (6)

	�;i=	�;o ¼ �: (7)

The apparatus used for the experiments, the Twente
turbulent Taylor-Couette (T3C), has an inner cylinder
with an outer radius of ri ¼ 0:200 m and a transparent
outer cylinder with inner radius ro ¼ 0:279 m giving a

radius ratio of � ¼ 0:716. The cylinders have a height
of ‘ ¼ 0:927 m resulting in an aspect ratio of � ¼
‘=ðro � riÞ ¼ 11:7. More details can be found in
Ref. [39]. For the PIVand PTVmeasurements, the working
fluid (water) is seeded with fluorescent polymer particles
[40]. Using a laser [41], we create a horizontal light sheet
of roughly 500 �m thickness for illumination. The flow is
then imaged from the top (see Fig. 1) using a high-
resolution camera [42] with large dynamical range.
For each rotational velocity, 104 image pairs were

acquired at a recording frequency of 10 Hz. The mean
velocity distribution was computed using single-pixel en-
semble correlation. This technique [31,43] leads to a final
resolution of � 150 �m and in over 500 independent data
points in the 80 mm gap. The standard deviation was
directly computed from the velocity probability density
function, which was extracted from the shape of the corre-
lation function, as discussed in Ref. [33]. This procedure
ensures that all turbulent scales are included in the standard
deviation. In contrast to standard PIV analysis, where only
spatially low-pass filtered results are achieved, here also
the contribution of the small-scale fluctuations is properly
considered. In order to resolve the near-wall region at
the inner cylinder, a microscope [44] was mounted in
front of the camera. With this setup, a scaling factor of
�10 �m=px was achieved. To maximize the spatial
resolution, the near-wall region was evaluated with PTV
methods, which are best suited for this purpose [32].
Figure 2 shows all the measured midheight profiles: five

covering the full gap and two covering just the region near
the inner cylinder. As expected, the profiles do not conform
to the laminar nonvortical profile, and the bulk has a much
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FIG. 2 (color online). Azimuthal velocity profiles for varying
Re(Ta) across the gap of the TC apparatus. The legend indicates
Re(Ta) of the experiments. Insets (a) and (b) show a zoom of the
data of the inner and outer BL, respectively. Profiles in inset (a)
are stacked top to bottom for increasing Ta. Individual data
points are plotted in the insets showing the high resolution of
the measurements. The gray solid line represents the exact
laminar circular-Couette (nonvortical) solution of the Navier-
Stokes equations. The dashed line is the profile for ReðTaÞ ¼
260ð105Þ obtained from DNS [21].
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shallower slope due to turbulent mixing as the bulk flow in
our parameter regime is fully turbulent [8,30]. As a com-
parison, we included the profile for one of the first vortical
flows, Re ¼ 260 [21]. For the laminar axially independent
solution, the convective part of J! is zero; any convection
in the bulk of the system therefore decreases the @r! term
in the bulk, resulting in a shallower angular velocity gra-
dient. From the insets we can clearly see that for increasing
Re(Ta) the BLs become steeper, and indeed the angular
velocity profile has then to become steeper as ur in J! is
zero at the wall, and we are only left with the term @r!. We
now split our data in two parts: r0 2 ½0; 1=2� (inner BL)
and r0 2 ½1=2; 1� (outer BL) and normalize velocities with
the appropriate u� [Eqs. (3) and (6)] and distances with the
respective 	� [Eqs. (4) and (7)], see Fig. 3. We used global
torque measurements [8,37] to find u� and 	�. We spatially
resolved the viscous sublayer (yþ < 5) for the lowest Re. It
is known that in this viscous sublayer the velocity profile
follows uþ ¼ yþ. This concept also applies to TC flow, as
supported by numerical simulations at low Re(Ta)
(see, e.g., Ref. [21]). It should be noted that global torque
measurements provide an average torque T , while the
local torque depends on height (following the large-scale
Taylor vortex structure). So while Eq. (2) holds for
the average �w;i, it might have an axial dependence.

However, it has been found [11] that the azimuthal velocity
at midgap only has a weak axial dependence of the order of
�1%. To normalize the velocity profiles, we used the
globally measured torque [as only this quantity is available
for all Re(Ta) with sufficient precision] and thus the
average �w;i; this causes the imperfect matching of

uþ ¼ yþ.
In flat turbulent BL flows, at yþ > 50 the effects of

viscosity diminish. Furthermore, as suggested by Prandtl

and von Kármán [45], in this limit the velocity profile
converges to

uþ ¼ 1

�
lnyþ þ B; (8)

with � the von Kármán constant and B the logarithmic
intercept. We will now apply this concept to TC flow.
Outside the viscous wall region yþ > 50 (inside the outer

layer), Fig. 3 shows the existence of a log layer in the
ultimate TC regime (Ta * 109), which is in sharp contrast
to the laminar BLs found in the direct numerical simula-
tions (DNS) [21] (indicated by thin lines) in the classical
turbulent regime. Our profiles are fitted to Eq. (8) over the
interval yþ 2 ½50; 600� (see the shaded area in Fig. 3). We
have chosen yþ ¼ 50 as the lower edge of the interval as it
is the start of the outer region, and the upper edge yþ ¼ 600
corresponds to about midgap [ðri þ roÞ=2] for our lowest
Re(Ta) and the edge of the log regime for our highest Re
(Ta) (see Fig. 3), but we stress that the values for � and B
only weakly depend on the exact extension of the fitting
interval, as was already found for pipe flow [24]. The values
for� are shown in Fig. 4. They are different for the inner and
outer BL and depend on Re(Ta). For increasing Re(Ta), we
see that the values for the inner BL approach a value of � �
0:40, close to the known classical value of� ¼ 0:40 [25,28],
recently systematically examined by Marusic et al. [24].
For the smaller Re(Ta), the value for � is larger as the log

layer is not yet fully developed, as clearly seen from Fig. 3.
However, also geometric effects, namely, the curvature
of the cylinder, may contribute to this deviation. To quan-
tify this effect, we plot the ratio of the outer edge 600	� of
the fitting regime to the radius of curvature of the cylinder
(see Fig. 4) from which we conclude that for high
Re> 106, the effect of the curvature becomes less than
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FIG. 3 (color online). (a) Azimuthal velocity profile near the inner cylinder (r0 2 ½0; 1=2�) for varying Re(Ta). yþ is the distance
from the inner cylinder in units of the viscous length scale 	�. u

þ is defined as ½uðriÞ � uðrÞ�=u�, where uðrÞ is the azimuthal
component of the velocity, and uðriÞ is the azimuthal velocity of the inner cylinder. (b) Azimuthal velocity profile near the outer
cylinder r0 2 ½1=2; 1�. yþ ¼ ðro � rÞ=	� is the distance from the outer cylinder in wall units. For the case of the outer BL, the velocity
is scaled as uþ ¼ uðrÞ=u�. Both figures include the logarithmic law of the wall uþ ¼ 1=� lnyþ þ B by von Kármán, with the typical
values of � ¼ 0:40 and B ¼ 5:2, the viscous sublayer uþ ¼ yþ, and in gray the fitting domain yþ 2 ½50; 600�. Each data set is
accompanied by an arrow with caption indicating Re(Ta). Thin solid lines are DNS results [21].
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1%, i.e., negligible. Finally, we note that due to a possible
slight height dependence of �w;i caused by the Taylor

vortices even for this very turbulent flow, and the resulting
imperfect matching of uþ ¼ yþ, the values of � could still
slightly vary with height.

In addition to PIV, high-resolution PTV measurements
and analysis have also been performed. For these measure-
ments, we zoomed into the area near the inner cylinder
using a long-distance microscope to obtain a scaling factor
of �10 �m=px. The spatial resolution of PTV only
depends on the number of images and can thus be better
than the pixel grid spacing projected into physical space
[31]. We extract the variance 
2ðu�Þ from the shape of the
probability density function of the correlation function
[33], see Fig. 5. We normalize 
ðu�Þ2 with the friction
velocity u� [see Fig. 5(a)] and with the driving velocity
uðriÞ [see Fig. 5(b)]. For both curves, the maximum of

ðu�Þ2 is around yþ ¼ 12, which is remarkably similar to
the values obtained in pipe and channel flows (see, e.g.,
Refs. [27,28]). In addition, it can be observed that the
collapse of the data is better when we normalize 
ðu�Þ
with the driving velocity rather than the shear velocity u�.
Opposed to the profiles shown in Fig. 3, in the outer layer
(yþ > 50) the variance profiles universally collapse inside
the buffer layer (5< yþ < 30) and seem not to depend on
Re(Ta), vortical structure, and streamwise curvature. As
shown in Fig. 5(a), we fit the data for yþ > 50 (outer layer)
with ½
ðu�Þ=u��2 ¼ B1 � A1 lny

þ—the log law for the
velocity variance [25]. The corresponding fitting parame-
ters are indicated in Fig. 5(a). Remarkably, the slope A1

(varying from 1.26 to 1.45) is comparable with values
found (A1 � 1:25) in high Re BL flows [25].

To summarize, we performed direct measurements of
the velocity BL profiles in highly turbulent TC flow up to
Ta ¼ 6:2� 1012 and found the emergence of a log layer,
as theoretically proposed in Refs. [3,4]. The fitted von
Kármán constant � was found to approach the classical

value of 0.40 for large enough Ta. Furthermore, we found
that the peak in 
ðu�Þ universally collapsed around
yþ ¼ 12, and that the height of the peak was found to
collapse better when scaled with the driving velocity as
compared to the friction velocity. Lastly, the variance
profiles depicted a log dependence for yþ > 50.
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Bruggert for their technical support. We also acknowledge
stimulating discussions with B. Eckhardt, S. Grossmann,
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KA 1808/8.
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