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We study matter-wave bright solitons in spin-orbit coupled Bose-Einstein condensates with attractive

interactions. We use a multiscale expansion method to identify solution families for chemical potentials in

the semi-infinite gap of the linear energy spectrum. Depending on the linear and spin-orbit coupling

strengths, the solitons may present either a sech2-shaped or a modulated density profile reminiscent of the

stripe phase of spin-orbit coupled repulsive Bose-Einstein condensates. Our numerical results are in

excellent agreement with our analytical findings and demonstrate the potential robustness of solitons for

experimentally relevant conditions.
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Introduction.—Gauge fields are ubiquitous in physics, as
they are relevant to the interactions of charged particles
with electromagnetic fields [1] or to fundamental interac-
tions in elementary particle physics [2]. A variety of arti-
ficial gauge fields can be realized in ultracold atomic gases
[3], as was also shown in recent experiments [4,5] with
binary Bose-Einstein condensates (BECs). Importantly,
synthetic magnetic fields can produce spin-orbit (SO)
interactions in a BEC consisting of two hyperfine states
of 87Rb coupled by a Raman laser [5].

Different studies in SO coupled BECs have revealed the
existence of a ‘‘stripe phase’’ [6] and phase transitions
between that and other states [7]. Vortices with [8] or
without [9] rotation, Skyrmions [10], Dirac monopoles
[11], gray solitons [12], and self-trapped states (solitons)
of an effective nonlinear Dirac equation [13], were also
found. While the above studies refer to repulsive BECs, SO
coupled BECs with attractive interactions have not been
studied so far [14].

As it is known, attractive BECs can become themselves
matter-wave bright solitons [15], i.e., self-trapped local-
ized mesoscopic quantum systems with interesting appli-
cations [16]. Here, we demonstrate the existence, stability,
and dynamics of matter-wave bright solitons in SO coupled
attractive BECs, emerging in the semi-infinite gap of the
linear spectrum. We find three distinct states having
(a) zero momentum, (b) finite momentum, þk0 or �k0,
and (c) stripe densities formed by the interference of the
modes with �k0 momentum; the spin polarization of all
states is identified. We also show that branches (a) and
(c) are generically stable, while branch (b) is stable for
sufficiently small atom numbers. Hence, these solitons
may be well within experimental reach.

Model.—We consider SO coupled BECs confined in a
quasi-one-dimensional parabolic trap, with frequencies
!x � !?. Assuming equal contributions of Rashba [17]
and Dresselhaus [18] SO couplings (as in the experiment of

Ref. [5]), the mean-field energy functional of the system is
E ¼ Rþ1

�1 Edx, with

E ¼ 1

2
ð�yH 0� þ g11jc "j4 þ g22jc #j4

þ 2g12jc "j2jc #j2Þ; (1)

where � � ðc "c #ÞT , and the wave functions c " and c #
are related to the two pseudospin components of the BEC.
The single particle Hamiltonian H 0 in Eq. (1) reads

H 0 ¼ 1

2m
ðp̂x1� kL�̂zÞ2 þ VtrðxÞ1þ��̂x; (2)

where p̂x ¼ �i@@x is the momentum operator in the lon-
gitudinal direction,m is the atomic mass, �̂x;z are the Pauli

matrices, 1 is the unit matrix, kL is the wave number of the

Raman laser which couples the two hyperfine states, � ¼ffiffiffi
2

p
�R is the Raman frequency, VtrðxÞ ¼ m!2

xx
2=2 is the

parabolic trap, and the effective one-dimensional coupling
constants, gij ¼ 2�ij@!? (i; j ¼ 1; 2), are defined by the

s-wave scattering lengths �ij; for attractive interactions,

�ij<0. Measuring the length in units of a? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!?Þ

p
,

time in units of !�1
? , energy in units of @!?, and densities

in units of ð2j�11jÞ�1, we derive from Eq. (1) dimension-
less equations of motion for c ";#:

i@tc " ¼
�
� 1

2
@2x � ikL@x þ VtrðxÞ

� jc "j2 � �jc #j2
�
c " þ�c #; (3)

i@tc # ¼
�
� 1

2
@2x þ ikL@x þ VtrðxÞ

� �jc "j2 � �jc #j2
�
c # þ�c "; (4)
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where VtrðxÞ ¼ ð!x=!?Þ2x2=2, � ¼ j�12=�11j, � ¼
j�22=�11j, and we have used kL ! kL=a? and
� ! �@!?.

Variants of Eqs. (3) and (4) with Vtr ¼ 0 have been
studied in various contexts, ranging from field theory and
the massive Thirring model [19] to nonlinear optics—in
optical fiber gratings [20], birefringent optical fibers [21],
and coupled optical wave guides [22]—and SO coupled
repulsive BECs [13]. Solitons studied in these works were
found to be stable only in nearly integrable cases
[13,20,21]; in Ref. [22], so-called ‘‘embedded solitons’’
were generally found to be semistable. Here, we use
a multiscale expansion method to derive approximate soli-
ton solutions of Eqs. (3) and (4), which are stable for a
wide range of experimentally relevant parameter values.
Analytical results will be obtained for � ¼ 1 and Vtr ¼ 0;
the general case is investigated numerically.

Analytical results.—We start by seeking plane wave
solutions of Eqs. (3) and (4), of the form c ";# ¼
c 1;2 exp½iðkx�!tÞ�, of constant amplitudes c 1;2 � 1.
Requiring that the resulting linearized, homogeneous sys-
tem for c 1;2 has nontrivial solutions leads to the dispersion

relation for the energy ! and momentum k,

!�ðkÞ ¼ 1

2
k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Lk

2 þ�2
q

; (5)

which features two distinct branches–see Fig. 1. The upper
branch !þðkÞ always has a minimum ðk;!Þ ¼ ð0;þ�Þ,
and the lower branch !�ðkÞ has different behaviors
depending on the sign of parameter � � 1� k2L=�: if
�> 0 then !�ðkÞ has a minimum ðk;!Þ ¼ ð0;��Þ
(region I); if �< 0, !�ðkÞ has a maximum ðk;!Þ ¼
ð0;��Þ and two minima ð�k0; !minÞ (region II). Notice
that the lowest energy states in region II may have either a
positive or negative momentum�k0 or they can be a linear
superposition of both modes with momentum �k0, thus
forming the stripe phase [6].

As shown in Fig. 1, for energies !<�� in region I, or
!<!min in region II, there exists a semi-infinite gap where
linear modes do not propagate. However, matter-wave

bright solitons with energies inside the semi-infinite gap
can be found analytically via a multiscale expansion
method. Such solitons will have a chemical potential �,
defined as � ¼ ��� �2!0 in region I and � ¼ !min �
�2!0 in region II; here, � is a formal small parameter, and
!0 is a free positive parameter [with !0=� ¼ Oð1Þ],
which sets the energy difference �2!0 from the linear limit
inside the semi-infinite gap (see Fig. 1).
Accordingly, we seek solutions of Eqs. (3) and (4) in

the form

c "ðx; tÞ
c #ðx; tÞ

 !
¼ �AðXÞ

�BðXÞ

 !
eiðKx��tÞ; (6)

where AðXÞ and BðXÞ are unknown functions of the slow
variable X � �x, and momentum K is either K ¼ 0 in
region I or K ¼ �k0 in region II. Expanding AðXÞ and
BðXÞ as series in �, i.e., AðXÞ ¼ P

n�0�
nanðXÞ and BðXÞ ¼P

n�0�
nbnðXÞ, and substituting the above expressions in

Eqs. (3) and (4), we obtain the following.
In region I, the solvability conditions at the leading

[Oð�Þ] and first-order [Oð�2Þ] approximations are satisfied
if a0 ¼ �b0 � uðXÞ and a1 ¼ b1 ¼ iðkL=2�Þu0ðXÞ,
where uðXÞ is an unknown complex function (primes
denote derivatives with respect to X). The latter is deter-
mined at the orderOð�3Þ, where the solvability condition is
the following stationary nonlinear Schrödinger equation:

u00 � �1uþ �2juj2u ¼ 0; (7)

where the positive coefficients �1 and �2 are given by

�1 ¼ 2!0�
�1; �2 ¼ 2ð1þ �Þ��1:

In region II, for K ¼ �k0, the solvability condition at
the leading order reads

a0 ¼ ���1kLðkL � k0Þb0 ¼ uðXÞ:
At the next order, we obtain a similar condition for a1
and b1:

kLðkL � k0Þa1 þ�b1 ¼ iðkL � k0Þu0ðXÞ:
Finally, at the order Oð�3Þ, the solvability condition is
again Eq. (7), but with coefficients �1 and �2 now given by

�1 ¼ 2!0k
2
L

k20
;

�2 ¼ 2kLðkL � k0Þðk4L þ k2Lk
2
0 þ ��2Þ

�2k20
:

Taking into regard that the soliton solution of the sta-

tionary nonlinear Schrödinger equation, (7), is uðXÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1=�2

p
sechð ffiffiffiffiffi

�1
p

XÞ, we end up with the approximate

soliton solutions of Eqs. (3) and (4), characterized by the
free parameter �

ffiffiffiffiffiffi
!0

p
. Solutions in region I read

FIG. 1 (color online). Energy spectrum! ¼ !�ðkÞ. The upper
branch !þ (blue line) has a minimum ðk;!Þ ¼ ð0;�Þ in both
regions I (left panel) and II (right panel), for k2L <� and
k2L >�. The lower branch !� (red line) has a minimum
(maximum) ðk; !Þ ¼ ð0;��Þ in region I (region II); in region
II, there also exist two minima ð�k0; !minÞ.
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c "
c #

 !
� �

ffiffiffiffiffiffiffiffiffiffiffiffi
2!0

1þ�

s
sech

0
@�

ffiffiffiffiffiffiffiffiffi
2!0

�

s
x

1
A 1

�1

 !
e�i�t; (8)

where � ¼ ��� �2!0, while solutions in region II read

c "
c #

 !
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kL � k0
p fðxÞ �

�kLðkL � k0Þ

 !
e�ik0x�i�t; (9)

where � ¼ !min � �2!0 and the function fðxÞ is given by

fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!0kL

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4L þ k2Lk

2
0 þ ��2

q sech

0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!0k

2
L

k20

s
x

1
A: (10)

Equation (9) describes two different soliton solutions cor-
responding to k ¼ �k0. We can construct still another
approximate soliton solution by using their linear combi-
nation. Particularly, Eqs. (3) and (4) for � ¼ 1 are compat-
ible with the symmetry c " ¼ � �c # (the bar denotes

complex conjugate) and the following solution satisfies
this symmetry:

c "
c #

 !
� �fðxÞ C1 cosðk0xÞ þ iC2 sinðk0xÞ

�C1 cosðk0xÞ þ iC2 sinðk0xÞ

 !
e�i�t;

(11)

where � ¼ !min � �2!0, C1 ¼ �þ k2L, and C2 ¼
�k0kL. Contrary to what is the case for the solutions of,
Eqs. (8) and (9), which have a bell-shaped sech2-density
profile, the soliton (11) has a spatially modulated density
profile (with a wavelength 2�=k0); thus, this ‘‘stripe soli-
ton’’ (11) is analogous to the characteristic stripe phase of
SO coupled repulsive BECs [6,7]. Note that only solutions
(8) and (11) were considered in the numerical studies of
Ref. [22]; solution (9), which does not satisfy the symme-
try c " ¼ � �c #, was not previously explored.

The above solutions describe different (normalized) lon-
gitudinal and transverse spin polarization of the solitons,
given by ~�x;z ¼ h�x;zi=ðjc "j2 þ jc #j2Þ, where h�x;zi �
�y�̂x;z�: in region I, we find that the solitons are fully

polarized along the x axis, i.e., ~�x ¼ �1 (and ~�z ¼ 0); in
region II, the stripe soliton has again ~�z ¼ 0, while the
�k0 soliton states are characterized by a finite ~�z, namely,

~�z ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�=k20Þ2

q
and ~�x ¼ ��=k20. Thus, solitons’

spin polarizations bear resemblance to those found for
nonlinear states in SO coupled repulsive BECs [7].

Stability and numerical results.—In our numerical simu-
lations, we have assumed a quasi-one-dimensional attrac-
tive BEC, confined in a trap with frequencies
!x ¼ 2�	 20 Hz and !? ¼ 2�	 1000 Hz containing
approximately 103 atoms, and scattering lengths ratios
1:0:8:1 (i.e., � ¼ 0:8). We have fixed 	L � 2�=kL ¼
804 nm, and varied the parameter � in the range
ð1–10ÞEL, with EL ¼ @

2k2L=2m (as in Ref. [5]), with m
being the 7Li mass. A fixed-point algorithm, and an initial
ansatz pertaining to solutions (8)–(11) for regions I and II,

was used to find respective numerical solutions, which are
exact ones (up to a prescribed numerical tolerance).
Examples, for both regions I and II, are provided in
Fig. 2, where the density profiles, jc "j2 þ jc #j2, as well

as the real and imaginary parts (insets) are shown. It is
observed that solitons in region I and stripe solitons in
region II respect the symmetry c " ¼ � �c #, while the k0
soliton in region II does not. The approximate analytical
results (solid lines) are in excellent agreement with the full
numerical ones (circles and dashed lines). Furthermore, we
have confirmed the existence of the soliton families for
� � 1 in a relatively wide range of values, i.e., for
0:5 
 � 
 1:5.
We have also studied the stability of the solitons. Since

the energies of solitons lie inside the semi-infinite gap,
their spectral stability is controlled by the negative index
count (see Chap. 4 of Ref. [23]). We write the spectral
stability problem as

Hu ¼ i	Ju; (12)

where u is a 4	 1 vector of the perturbations to [c ", �c ",
c #, �c #], H is a 4	 4 self-adjoint matrix operator associ-

ated with the right-hand side of Eqs. (3) and (4) linearized
around the solitons, J ¼ diagð1;�1; 1;�1Þ, and 	 is a
spectral parameter with the instability growth rate given
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FIG. 2 (color online). Density profiles of a bright soliton in
region I (top), a þk0 soliton (middle), and a stripe soliton
(bottom) in region II. Solid line and circles (or dashed lines)
depict, respectively, the analytical results of Eqs. (8)–(11), and
the numerically found solutions. Left and right insets show,
respectively, the real and imaginary parts of c " (blue) and c #
(red). Parameters are � ¼ 120 and �2!0 ¼ 0:4 (region I), or
� ¼ 35 and �2!0 ¼ 0:4 (region II); in both regions kL ¼ 8 and
� ¼ 0:8.
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by Reð	Þ (if positive). The operator H has a finite
number of negative eigenvalues, denoted by nðHÞ, and a
two-dimensional kernel spanned by the symmetries of
Eqs. (3) and (4) :

u1 ¼ ½ic ";�i �c "; ic #;�i �c #�;
u2 ¼ @x½c "; �c "; c #; �c #�:

Associated with the eigenvectors of H, there exist general-
ized eigenvectors of the spectral stability problem, Eq. (12),
given by solutions of the inhomogeneous equations

Hvj ¼ iJuj; j ¼ 1; 2: (13)

Computing the symmetric matrix of symplectic projections
with elementsDlj ¼ hvl; iJuji (l; j ¼ 1; 2), where h�; �i is a
standard inner product, we denote the number of negative
eigenvalues ofD by nðDÞ. The negative index count is now
given by # ¼ nðHÞ � nðDÞ and this number determines the
number of unstable eigenvalues with Reð	Þ> 0 and/or the
number of potentially unstable eigenvalues withReð	Þ ¼ 0
and negative energy in the spectral stability problem,
Eq. (12) [23].

To assess the stability of solitons in regions I and II, we
have computed indices nðHÞ and nðDÞ by numerically
solving the eigenvalue problem (12) and Eq. (13) (this
was done by using a 2nd-order difference scheme and an
Arnoldi-type method). For solitons in region I and the
stripe solitons in region II, we have found that nðHÞ ¼ 1
and nðDÞ ¼ 1 in their existence intervals; therefore, the
negative index # is zero. This ensures spectral stability of
these solitons. On the other hand, for�k0 solitons in region
II, nðHÞ ¼ 3 in the existence interval, but nðDÞ changes
from 1 near the bifurcation at � ¼ !min to 2 for smaller
values of�. Therefore, the negative index is # ¼ 2 near the
bifurcation at � ¼ !min, due to a pair of negative energy
yet neutrally stable eigenvalues in the spectrum of Eq. (12).
For smaller values of �, it switches to # ¼ 1 indicating a
real unstable eigenvalue.

Figure 3 illustrates the above behavior by depicting the
dependence of the eigenvalues 	 on�, for the stripe and k0
solitons in region II. The spectrum of the stripe soliton

(left panel) consists of purely imaginary eigenvalues, indi-
cating spectral stability; note that a pair of eigenvalues
departs from � � !min and grows, but eventually collides
with the rest of the spectrum for decreasing �, without
inducing any instability. On the other hand, the spectrum of
theþk0 soliton (right panel) indicates the emergence of an
instability when a pair of neutrally stable eigenvalues of
negative energy crosses zero at � ¼ �c � �42:9 and
splits along the real axis for smaller �, yielding an expo-
nential growth of perturbations. This zero crossing occurs
when the negative index count # changes from 2 to 1.
Numerical soliton solutions were also obtained for ��1

and Vtr � 0 and their dynamics was investigated. These
solutions were perturbed by a noise of strength �10% of
their initial amplitudes, and used as initial conditions for
Eqs. (3) and (4), which were then numerically integrated
via a 4th-order Runge-Kutta method. As shown in Fig. 4,
solitons in region I [panel (a)], stripe solitons in region II
[panel (b)], and k0 solitons with � ¼ �41:77>�c,
corresponding to their stability region [panel (c)], are
robust up to t ¼ 4000 (� 1 sec), which was the time of
the simulation. An example of unstable k0 solitons with
� ¼ �43<�c is also illustrated [panel (d)]: the soliton
departs from an unstable position for short times [see inset
in panel (d)] but later is reflected due to the trap and
oscillates therein. Note in the absence of the trap, the
dynamics are as in Fig. 4, but with the difference that, after
the onset of the instability, the unstable k0 soliton moves
steadily with a nearly constant speed [cf. inset in panel (d)
of Fig. 4].
We stress that although our analytical results were

obtained in the cases � ¼ 1 and Vtr ¼ 0, the simulations
have revealed the existence and stability of solitons for a
wide range of values � � 1 in the presence of the trap and
for different values of �. This clearly indicates that the
presented matter-wave soliton families have an excellent
chance to be observed in experiments with SO coupled
attractive BECs.
Conclusions.—In summary, we have used a multiscale

expansion method to identify matter-wave bright soliton
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FIG. 3 (color online). Eigenvalues obtained from the spectral
problem, Eq. (12), for the stripe soliton (left) and þk0-soliton
(right) branches. The latter becomes spectrally unstable due to
the eigenvalue pair with Reð	Þ � 0 for � & �42:9. Parameters
are as in Fig. 2.
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states in SO coupled attractive BECs. The solitons, char-
acterized by a chemical potential residing in the semi-
infinite gap of the linear spectrum, were approximated
analytically and shown to exhibit either a sech2-shaped
or a modulated density profile, strongly reminiscent of
the stripe phase of SO coupled repulsive BECs. Our ana-
lytical predictions were corroborated by numerical simu-
lations, which have shown that the solitons exist and are
generally robust for a wide range of the physical parame-
ters involved even in the presence of noise. An interesting
future direction is the investigation of higher-dimensional
generalizations and collapse [24] for the solitons presented
above. One can then explore (as in Ref. [25]) time- or
space-dependent potentials, nonlinearities, and gain or
loss, and identify robust three-dimensional solitons.
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