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We study the exact time-dependent potential energy surface (TDPES) in the presence of strong

nonadiabatic coupling between the electronic and nuclear motion. The concept of the TDPES emerges

from the exact factorization of the full electron-nuclear wave function [A. Abedi, N. T. Maitra, and

E. K.U. Gross, Phys. Rev. Lett. 105, 123002 (2010)]. Employing a one-dimensional model system, we

show that the TDPES exhibits a dynamical step that bridges between piecewise adiabatic shapes. We

analytically investigate the position of the steps and the nature of the switching between the adiabatic

pieces of the TDPES.
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The description of coupled electron-nuclear motion is
one of the biggest challenges in condensed-matter physics
and theoretical chemistry. Fundamental to our understand-
ing is the adiabatic separation of electronic and nuclear
motion embodied in the Born-Oppenheimer (BO) approxi-
mation. It allows one to visualize—approximately—a
molecule as a set of nuclei moving on a single potential
energy surface generated by the electrons in a specific
electronic eigenstate. The BO approximation breaks
down when two or more Born-Oppenheimer potential
energy surface (BOPES) come close or cross. Some of
the most fascinating and most challenging molecular pro-
cesses occur in the regime where the BO approximation is
not valid, e.g., ultrafast nuclear motion through conical
intersections [1], radiationless relaxation of excited elec-
tronic states [2], and intra- and intermolecular electron and
proton transfer [3], to name a few. The standard way of
studying and interpreting these so-called, ‘‘nonadiabatic’’
processes is to expand the full molecular wave function in
terms of the BO electronic states. Within this expansion,
nonadiabatic processes can be viewed as a nuclear wave
packet with contributions on several BOPESs, coupled
through the nonadiabatic coupling terms which in turn
induce transitions between the BOPESs. While this pro-
vides a formally exact description one may nevertheless
ask: Is it also possible to study the molecular process using
a single potential energy surface? This question is particu-
larly relevant if one thinks of a classical or semiclassical
treatment of the nuclei where a well-defined single classi-
cal force would be highly desirable.

In a recent Letter, we have introduced an exact time-
dependent potential energy surface (TDPES) that, together
with an exact time-dependent vector potential, governs the
nuclear motion. These concepts emerge from a novel way
to approach the coupled electron-nuclear dynamics via an
exact factorization of the electron-nuclear wave function
[4]. Features of the exact TDPES were studied in the
presence of strong laser fields [4,5]. In the present Letter

we investigate the generic features of the exact TDPES
without an external laser but in the presence of strong
nonadiabatic couplings. A major result will be that the
exact TDPES exhibits nearly discontinuous steps connect-
ing different static BOPES, reminiscent of Tully’s surface
hopping [6] in the classical limit.
In [4] we have proved that the exact solution of the time-

dependent Schrödinger equation (TDSE), Ĥ�ðr;R; tÞ ¼
i@t�ðr;R; tÞ, of the complete system of interacting

electrons and nuclei can be written as �ðr;R; tÞ ¼
�Rðr; tÞ�ðR; tÞ, with the nuclear wave function �ðR; tÞ
and the electronic conditional wave function �Rðr; tÞ
that satisfies the partial normalization conditionR
drj�Rðr; tÞj2 ¼ 1. In the absence of time-dependent ex-

ternal fields, the system is described by the Hamiltonian

Ĥ ¼ ĤBOðr;RÞ þ T̂nðRÞ, where ĤBOðr;RÞ is the tradi-

tional BO electronic Hamiltonian, and T̂nðRÞ is the nuclear
kinetic energy. Throughout this Letter we use atomic
units and the electronic and nuclear coordinates are
collectively denoted by r and R, respectively. The exact

electronic wave function satisfies the equation

ðĤel � �ðR; tÞÞ�Rðr; tÞ ¼ i@t�Rðr; tÞ, where Ĥelðr;RÞ ¼
ĤBOðr;RÞþPNn

�¼1½ð� ir��A�ðR; tÞÞ2=2þ ð� ir��=�þ
A�ðR; tÞÞð� ir��A�ðR; tÞÞ�=M�. Here fM1; . . . ;MNn

g
are the nuclear masses of a system with Nn nuclei. The
time evolution of the nuclear wave function is governed by
the Schrödinger equation:

 XNn

�¼1

ð� ir� þA�ðR; tÞÞ2
2M�

þ �ðR; tÞ
!
�ðR; tÞ

¼ i@t�ðR; tÞ: (1)

The TDPES appearing in this equation is defined as

�ðR; tÞ ¼ h�RðtÞjĤelðr;RÞ � i@tj�RðtÞir, and the vector
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potential is given by A�ðR; tÞ ¼ h�RðtÞj � ir��RðtÞir.
�ðR; tÞ is a sum of two parts, the gauge-invariant [7] term

�giðR; tÞ ¼ h�RðtÞjĤelðr;RÞj�RðtÞir; (2)

and a gauge-dependent one given by

�gdðR; tÞ ¼ h�RðtÞj � i@tj�RðtÞir: (3)

Here, h� � � j � � � j � � �ir denotes the inner product over

electronic variables only.
Why is this representation of the correlated electron-

nuclear many-body problem exciting? The wave function
�ðR; tÞ that satisfies the exact nuclear equation of motion

(1) leads to an N-body density �ðR; tÞ ¼ j�ðR; tÞj2 and an

N-body current density J�ðR;tÞ¼Imð��r��Þþ�ðR;tÞA�

which reproduce the true nuclear N-body density and
current density obtained from the full wave function
�ðr;R; tÞ [5]. In this sense, �ðR; tÞ can be viewed as the

proper nuclear wave function. The time evolution of
�ðR; tÞ, on the other hand, is completely determined by

the TDPES and the vector potential. Moreover, these
potentials are unique up to within a gauge transformation.
This uniqueness is straightforwardly proven by following
the steps of the current-density version [8] of the Runge-
Gross theorem [9]. In other words, if one wants a TDSE
whose solution �ðR; tÞ yields the true nuclear N-body

density and current density, then the potentials appearing
in this TDSE are (up to within a gauge transformation)
uniquely given by A�ðR; tÞ and �ðR; tÞ; there is no other

choice. This also implies that the gradient of this exact
TDPES is the only correct force on the nuclei in the
classical limit (plus terms arising from the vector potential,
if those cannot be gauged away). The goal of this Letter is
to find out how this exact TDPES looks when one has
strong nonadiabatic couplings in the traditional expansion
in BO states. One major result will be that the exact TDPES
shows nearly discontinuous steps whenever the nuclear
wave packet splits in the vicinity of an avoided crossing
of the BOPES.

To study the exact TDPES we first of all need a problem
that is simple enough to allow for a numerically exact solu-
tion and that nevertheless exhibits the characteristic features
associated with strong nonadiabatic couplings, such as the
splitting of the nuclear wave packet. For this purpose we
employ the model of Shin and Metiu [10]. It consists of
three ions and a single electron. Two ions are fixed at a
distance of L ¼ 19:0a0, the third ion and the electron are
free to move in one dimension along the line joining the
two fixed ions. The Hamiltonian of this system reads

Ĥðr; RÞ ¼ � 1

2

@2

@r2
� 1

2M

@2

@R2
þ 1

j L2 � Rj þ
1

j L2 þ Rj

�
erf

�
jR�rj
Rf

�

jR� rj �
erf

�
jr�L

2j
Rr

�

jr� L
2 j

�
erf

�
jrþL

2j
Rl

�

jrþ L
2 j

: (4)

Here, the symbols r and R are replaced by r and R, the

coordinates of the electron and the movable nucleus mea-
sured from the center of the two fixed ions.M ¼ 1836 a:u:
and we choose Rf ¼ 5:0a0, Rl ¼ 3:1a0, and Rr ¼ 4:0a0
such that the first BOPES �ð1ÞBO is strongly coupled to the

second BOPES �ð2ÞBO around the avoided crossing at Rac ¼
�1:90a0 and there is a weak coupling to the rest of the
surfaces. The first three BOPESs are shown in Fig. 1,
together with the BO conditional electronic densities

j�ð1Þ
R ðrÞj2 and j�ð2Þ

R ðrÞj2. As expected, j�ð1Þ
R ðrÞj2 and

j�ð2Þ
R ðrÞj2 exhibit abrupt changes, along the R axis, at the

position of the avoided crossing, Rac: j�ð1Þ
R ðrÞj2 switches

from being localized around the fixed ion on the left
(r ¼ �9:5a0), to be localized around the one on the right

(r ¼ 9:5a0); j�ð2Þ
R ðrÞj2 on the other hand, presents a

single-peak structure for R< Rac and a double-peak struc-
ture for R> Rac.

We suppose that the system is initially excited to �ð2ÞBO and

the initial nuclear wave function is a wave packet with the

width � ¼ 1=
ffiffiffiffiffiffiffiffiffi
2:85

p
, centered at R ¼ �4:0a0 (see Fig. 1,

black solid line); i.e., the initial full wave function is

�0ðr; RÞ ¼ Ae�ðR�4Þ2=�2
�ð2Þ

R ðrÞ with A being a normaliza-
tion constant. Starting with�0ðr; RÞ as the initial state, we
propagate the TDSE, numerically exactly, to obtain the full
molecularwave function�ðr; R; tÞ and from itwe calculate,
as discussed in Ref. [5] (see also the Supplemental
Material [11]), the TDPES in the gauge where the vector

FIG. 1 (color online). Left: The first two BOPESs (indicated in
the figure) together with the third BOPES (black dashed line)
and the initial nuclear wave function (black solid line). Right:
Adiabatic electronic conditional densities as indicated in the
figures: the x axis represents the parametric coordinate R, the
y axis is the electronic coordinate r, and along the z axis we plot
the conditional probability of finding the electron in r given that
the ion is in R.
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potential is zero. Hence, the TDPES is the only potential
acting on the nuclear subsystem. In the upper panel of
Fig. 2, the gauge-invariant part of the TDPES (2) �gi is

plotted (black solid line) at four different times, along with

the two lowest BOPESs, �ð1ÞBO (red or dark gray dashed line)

and �ð2ÞBO (green or light gray dashed line). In the second

panel (from the top), the gauge-dependent part of the
TDPES (3) �gd is plotted at the same times. In the third

panel (from the top), the exact nuclear density (black dashed
line) j�ðR; tÞj2 is shown together with the absolute value
squared of the projection of the full wave function on the

first and second BO electronic states, i.e., jF1ðR; tÞj2 ¼
jR dr�ð1Þ�

R ðrÞ�ðr; R; tÞj2 (red or dark gray solid line) and

jF2ðR; tÞj2 ¼ jR dr�ð2Þ�
R ðrÞ�ðr; R; tÞj2 (green or light gray

solid line). In the lowest panel, j�Rðr; tÞj2 is presented.
At the initial time (t ¼ 0), due to the choice of the initial

state, the TDPES coincides with �ð2ÞBO. Since�0ðr; RÞ is not
an eigenstate of the Hamiltonian (4), it evolves in time. At

t ¼ 9:0 fs, �gi coincides with �ð2ÞBO for R< Rac, goes

smoothly through the avoided crossing region, and follows

�ð1ÞBO for R> Rac, resembling the diabatic potential energy

surface of state 2 in Ref. [10], in which the electron
interacts with the fixed ion on the right (r ¼ 9:5a0) and
with the moving ion, but not with the fixed ion on the left
(r ¼ �9:5a0). As �gd is constant in this region (Fig. 2), the

TDPES is identical with �gi [12]. The nuclear wave packet

is driven by the TDPES to spread toward the avoided
crossing of two BOPESs, where a significant nonadiabatic
transition happens and the exact nuclear density splits.
Already at this moment, a slight transition of the nuclear
wave packet to the lower surface is visible around the
avoided crossing. At later times, e.g., t ¼ 16:22, t ¼
26:24, and t ¼ 57:35 fs, far from the avoided crossing,
�gi contains steps that connect its different pieces that are

on top of different BOPESs in different slices of R space.
In the region around Rac, it follows the diabatic surface that
passes smoothly through the avoided crossing. On the other
hand, �gd is piecewise constant and presents similar steps

as �gi. Therefore, the TDPES �gi þ �gd preserves the fea-

tures mentioned before: i.e., (i) far from the avoided cross-
ing, it presents steps that connect the regions in R space in
which the TDPES has the shape of one BOPES to the
regions in which it has the shape of the other BOPES;
(ii) around the avoided crossing, it follows the diabatic
surface that smoothly connects one BOPES to the other.
The exact TDPES represented in Fig. 2 can be viewed

from a different perspective. The nuclear wave packet from
a semiclassical point of view can be represented as an
ensemble of classical trajectories, along which point par-
ticles evolve under the action of a classical force which is
the gradient of �gi. According to our observations, on

different sides of a step such a force is calculated from
different BOPESs. This is reminiscent of Tully’s surface
hopping approach [6,13], that deals with the problem of
coupled electron-nuclear dynamics semiclassically. The
method introduces stochastic jumps between BOPESs to
select the adiabatic surface that, at each point in time,
governs the classical nuclear dynamics. The nuclear den-
sity is reconstructed from bundles of classical trajectories.
Such bundles evolve independently from one another on
different adiabatic surfaces and are a semiclassical ap-
proximation of the components jFkðR; tÞj2 of the exact
nuclear density. The step feature of the TDPES, following
from the exact solution of the full TDSE, makes clear that,
after the wave packet splits at the avoided crossing, the
motion of its components (the bundles in surface hopping
language) is driven by single adiabatic surfaces and not
(like, e.g., in Ehrenfest dynamics) by an average electronic
potential.
The exact time-dependent electronic conditional den-

sity, shown in the lower panels of Fig. 2 at different
times, behaves similarly to the TDPES: (i) it smoothly

connects a j�ð2Þ
R ðrÞj2-like structure, by crossing Rac, with

a j�ð1Þ
R ðrÞj2-like structure, or vice versa, presenting a dia-

batic behavior, e.g., at t ¼ 9:0 fs; (ii) it displays abrupt
changes between regions that piecewise match different
adiabatic conditional densities.
In order to analyze the behavior of the TDPES,we rewrite

it by expanding the exact electronic conditional wave func-
tion in terms of the adiabatic electronic states [5]. Because

FIG. 2 (color online). First panel (top): The gauge independent
part of the TDPES (black solid line) plotted at four different

times (indicated), �ð1ÞBO (red or dark gray dashed line), and �ð2ÞBO

(green or light gray dashed line). Second panel (from the top):
The gauge-dependent part of the TDPES is plotted at the same
times. Third panel (from the top): The exact nuclear density
(black dashed line) is shown together with jF1ðR; tÞj2 (red or
dark gray solid line) and jF2ðR; tÞj2 (green or light gray solid
line). Lowest panel: The exact time-dependent electronic condi-
tional density j�Rðr; tÞj2 is plotted. The color range is the same
as Fig. 1.
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of the choice of the parameter in the Hamiltonian, we only

need to include the first two BO states, then �Rðr; tÞ ¼
C1ðR; tÞ�ð1Þ

R ðrÞ þ C2ðR; tÞ�ð2Þ
R ðrÞ. We expand the full

electron-nuclear wave function in the same basis,

�ðr; R; tÞ ¼ F1ðR; tÞ�ð1Þ
R ðrÞ þ F2ðR; tÞ�ð2Þ

R ðrÞ, where the
expansion coefficients, Fk’s and Ck’s, are related as

CkðR; tÞ ¼ FkðR; tÞ
�ðR; tÞ ¼ e�i�ðR;tÞFkðR; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijF1ðR; tÞj2 þ jF2ðR; tÞj2

p : (5)

Here, � is the phase of the exact nuclear wave function and
we have used the relation j�ðR; tÞj2 ¼ jF1ðR; tÞj2 þ
jF2ðR; tÞj2, determined by

R
drj�ðr; RÞj2. Now, we may

rewrite �giðR; tÞ and �gdðR; tÞ in terms of �ðkÞBOðRÞ and

CkðR; tÞ (k ¼ 1, 2):

�giðR; tÞ ¼
X
k¼1;2

jCkðR; tÞj2�ðkÞBOðRÞ; (6)

�gdðR; tÞ ¼
X
k¼1;2

jCkðR; tÞj2 _�kðR; tÞ; (7)

where �1 and �2 are the phases of C1, C2. In Eq. (6), all
terms of OðM�1Þ have been neglected and it only contains
BOPESs which are the leading terms responsible for the
shape of �giðR; tÞ, especially far from the avoided crossing

where the nonadiabatic couplings are small. The gauge-
dependent term is written in terms of the time derivative of
the phases, _�1 and _�2. jC1j2 and jC2j2 vary between 0 and 1
and jC1j2 þ jC2j2 ¼ 1 by virtue of the partial normalization
condition. Therefore, as Eq. (6) suggests, in the region

where �giðR; tÞ coincides with �ð1ÞBOðRÞ, the corresponding

expansion coefficient jC1j2 is close to 1 while jC2j2 is close
to 0 and vice versa. We have observed [Eq. (5)] that at R0,
the crossover of jF1j and jF2j where jF1ðR0; tÞj ¼
jF2ðR0; tÞj ¼ jXðtÞj, jC1j2 and jC2j2 are always equal to 1

2

and R0 is the center of the region where steps form. Moving
away from this point, one of the jCkj2’s becomes dominant

(Fig. 3) and �giðR; tÞ lies on top of the corresponding

BOPES.
To elaborate on how the TDPES switches between the

two adiabatic states, we Taylor expand jCkðR; tÞj2 around
R0 and keep only up to the linear order terms: jC1

2
ðR; tÞj2 ¼

½1� �ðtÞðR� R0Þ�=2, where �ðtÞ ¼ ½ðrRjF1ðR; tÞjÞR0
�

ðrRjF2ðR; tÞjÞR0
�=jXðtÞj. Now, using the relation 0 �

jCkj2 � 1 (k ¼ 1, 2), we can estimate the width of the
region �R where the switching between BOPESs occurs
as 2=�. Hence, the larger the values of �, the sharper the
steps become.
As an example, we discuss the TDPES at t ¼ 31:87 fs in

Fig. 3. As it is seen, �gi switches from �ð1ÞBOðRÞ to �ð2ÞBOðRÞ
over the region where jF1j and jF2j cross (see the bottom
plot). As jF1j and jF2j have opposite slopes and cross
where they are small, � is large yielding a small �R.
Outside the switching region, one of the jCkj2s becomes
dominant (see also the Supplemental Material [11] for
more details).
The concept of TDPES developed in [4] is completely

general. In [4] the TDPES ofHþ
2 in strong laser fields were

used to identify different mechanisms of dissociation. We
expect interesting insights also in resonant processes such
as photochemistry on conducting surfaces or resonance-
mediated inelastic transport from the study of the corre-
sponding TDPES. In this Letter, we have presented generic
features of the exact TDPES for the specific situation
where, according to the standard BO expansion frame-
work, significant nonadiabatic transitions occur and the
nuclear wave packet splits at the avoided crossing of two
BOPESs. For the one-dimensional model system studied
here, the TDPES is the only potential that governs the
dynamics of the nuclear wave function (the vector potential
can be gauged away) and provides us with an alternative
way of visualizing and interpreting the nonadiabatic pro-
cesses. We have shown that the gauge-invariant part of the
TDPES �giðR; tÞ is characterized by two generic features:

(i) in the vicinity of the avoided crossing, �giðR; tÞ becomes

identical with a diabatic potential energy surface in the
direction of the wave-packet motion; (ii) far from the
avoided crossing, �giðR; tÞ, as a function of R, is piecewise

identical with different BOPESs and exhibits nearly dis-
continuous steps in between. The latter feature holds after
the wave packet branches and leaves the avoided crossing.
The gauge-dependent part �gdðR; tÞ, on the other hand, is

piecewise constant in the region where �giðR; tÞ coincides
with different BOPESs. Hence, �gdðR; tÞ has little effect on
the gradient of the total TDPES, but may shift the BOPES
pieces of �giðR; tÞ by different constants causing the exact

TDPES to be piecewise parallel to the BOPESs. The
diabatic feature (i) of the TDPES supports the use of
diabatic surfaces as the driving potential when a wave
packet approaches a region of strong nonadiabatic cou-
pling. The step feature (ii) is in agreement with the

FIG. 3 (color online). Top: A snapshot of the gauge-invariant
part of the TDPES (solid black line) at the t ¼ 31:87 fs. For

reference, �ð1ÞBO (red or dark gray dashed line) and �ð2ÞBO (green or

light gray dashed line) are shown. Bottom: Expansion coeffi-
cients (indicated in the figure) of the (two states) adiabatic
expansion of the full wave function and the exact electronic
conditional wave function (see the text) at t ¼ 31:87 fs.
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semiclassical picture of nonadiabatic nuclear dynamics
provided by the Tully’s surface hopping scheme, which
suggests we calculate the classical forces acting on the
nuclei according to the gradient of only one of the
BOPESs. While our findings are based on a simple model
for which the TDSE can be integrated numerically exactly,
we expect that the diabatic shape and the steps are generic
features occurring as well in large realistic systems.
Clearly, systems with many degrees of freedom will
require the introduction of approximations. We expect
that the concepts developed in this Letter will ultimately
lead to improved algorithms for the mixed quantum-
classical treatment of electrons and nuclei.
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