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Parton Physics on a Euclidean Lattice
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I show that the parton physics related to correlations of quarks and gluons on the light cone can be
studied through the matrix elements of frame-dependent, equal-time correlators in the large momentum
limit. This observation allows practical calculations of parton properties on a Euclidean lattice. As an
example, I demonstrate how to recover the leading-twist quark distribution by boosting an equal-time

correlator to a large momentum.
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Since deep-inelastic scattering experiments at the
Stanford Linear Accelerator Center in late 1960’s, the
proton structure has been probed in various hard scattering
processes [1]. The results are the quark and gluon (parton)
momentum distributions and correlations, as well as distri-
bution amplitudes, etc. The parton physics involves intrinsi-
cally light-cone correlations in the sense that all quark and
gluons fields are separated along the light-cone, defined
with the real Minkowski time f. The information is
extremely useful for understanding the nonperturbative
structure of the proton and, for example, for calculating
the Higgs production cross section at the Large Hadron
Collider [2].

Computing the parton physics from the fundamental
theory, quantum chromodynamics (QCD), has been diffi-
cult. In principle, a light-cone correlation is best calculated
using the proton’s wave function in light-front coordinates
[3]. However, despite many years of effort, a realistic light-
front proton wave function has not yet been established.
On the other hand, in the formulation of nonperturbative
QCD on a Euclidean lattice, one cannot directly calculate
time-dependent correlations. Instead, one can only com-
pute moments of parton distributions and distribution
amplitudes, which are matrix elements of local operators.
However, the difficulty grows considerably for higher
moments for technical reasons [4].

In this paper, I present a direct approach to compute
parton physics on a Euclidean lattice through Lorentz
boost. To demonstrate this, let us consider the quark
distribution in a proton,

s w) = [ G ple )yt

N _
<exp(~ig [*dnatt))woIp. )
where the nucleon momentum P# is along the z direction,

Pt = (P° 0,0, P?), and £* = (r = z)/+/2 is the light-cone
coordinates with ¢ as the physical time, w? is the
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renormalization scale, A* is a gluon potential matrix
in the fundamental representation, ¢ is a quark field of
flavor g. The above expression is boost invariant along z,
i.e., independent P?; in particular, it is valid in the rest
frame where P = 0.

To find a way to calculate g(x, u*>) on a Euclidean
lattice, it is useful to exhibit the origin of the light-cone
correlation: The parton distribution has also been formu-
lated in terms of the local twist-2 operators, which are
defined as

OFr=tn = pylBiiDF2 | iDM) iy — trace,  (2)

where (w1 ... w,) indicates that all the indices are symme-
trized, the trace terms include operators with at least one
factor of the metric tensor g#i*/ multiplied by operators of
dimension (n + 2) with n — 2 Lorentz indices, etc. Its
matrix elements in the proton state are,

(PlO#1-#a(u?)|P) = 2a,(u?)(P* ... P* — trace), (3)

and the parton distribution is related to the local matrix
elements through [ dxx""'q(x, u?) = a,(u?) with even n.
The time-dependent correlation for the parton distribution
in Eq. (1) is recovered by taking all the components as +
in Eq. (3),

(PIOT-*(u?)|P) = 2a,(u*)P* ... P*. “4)

Thus, the light-cone correlation is kinematically connected
with + components of the nucleon four-momentum.

To eliminate the time dependence, we consider the
matrix elements of the twist-two operator with p; = u, =
... = u, = z, and in the nucleon state with large P*. Then

0% = y*iD* ... iD* — trace, )

where again the trace terms contain operators with at
most n —2 z’s. According to Lorentz symmetry, the
matrix elements of the trace terms are at most (P?)" 2
times Agcp. Similarly the right hand side of Eq. (3) is
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2a,(u)[(P?)" — AM?(P?)"~2 — .. ], where A is a numeri-
cal number of order 1, M is the nucleon mass, and ...
represents terms with still lesser powers of P?. Thus, we
conclude that

(P|y%iD* ... iD* | P)
= 2a,(u?)(P*)" X [1 + O(Agcp/ (P22, M?/(P9)?)]
(6)

where terms other than the first are power-suppressed in the
large P? limit.

Inverting the above result in term of a time-independent,
nonlocal expression, we find in the large P* limit,

dz ..., . - .
ate w, Py = [ L e Pl

X exp(—ig [ dZ’AZ(z’))l//(O)IP>
+ O(A/(P, M2 /(PF)) )

where x = k*/P%. An intuitive way to understand the
above result is to consider the Lorentz transformation of
a line segment connecting (0, 0, 0, z) with the origin of the
coordinates. As the boost velocity approaches the speed of
light, the spacelike line segment is tilted to the light-cone
direction. Of course, it cannot literally be on the light cone
because the invariant length cannot change for any amount
of boost. However, this slight off-light-cone-ness only
introduces power corrections which vanish asymptotically.

Intuitively, the parton distribution in Eq. (1) can be
regarded for the nucleon in the rest frame but the probe
is traveling at the speed of light, and hence the light-cone
correlation; On the other hand, the distribution Eq. (7) is
obtained from a static probe on a nucleon traveling at the
speed of light. This latter quantity is related to deep-
inelastic scattering in a frame where the virtual photon
momentum contains only the space component g* =
(0, 0), and the nucleon momentum is P>~ Q/2x. One
can also obtain a similar expression for the quark helicity
distribution with the replacement of y* by y*vys. As for the
gluon distribution, we have,

dz ..
2 — izk® 3
ol w2, P = [ e plpn)

<exp(~ig [[aza@)r 0P @

in the large P* limit, where A® is a matrix in adjoint

representation and i sums over the transverse directions.

And similarly, we have the polarized gluon distribution,
dz

Ag(x, 1“‘2’ Pz) = i_[meizkz<P|F3#(Z)

X exp(—ig /: dZ/AZ(Z/))F#S(ONP), 9)

from which one can integrate to get AG (FM =
1 /Zeﬂ”aﬁFaﬁ). However, we also find another way to

calculate AG on the lattice without explicitly doing this
integral [5].

Taking the infinite-momentum limit is a subtle process
in field theories, and the ultraviolet (UV) divergences must
be taken care of properly in the loop integrals with a correct
limiting procedure. In our case, we need to take the limit
after the renormalization procedure, whereas the standard
light-cone result in Eq. (1) has P? — oo taken before the
renormalization. Thus in modern language, the light-cone
distribution is an effective field theory of the quantity
in Eq. (7), in which there are large logarithms InP? in
perturbation theory, which can be transformed into the
standard renormalization scale dependence in the light-
cone distribution through matching conditions [5]. One
can see the interplay of the different limits by computing
the one-loop correction in the physical A* =0 gauge
(see Fig. 1),

Z

a A o AP
q(x, u?, P?) = Z‘TT(x) P + Z‘TP(x) IHT (10)

where A =+u? + (1 —x)2(P)?2 — (1 —x)P%, A is an
infrared mass cut-off and u? is an UV cut-off (renormal-
ization scale); T(x)=Crx/(1 —x)?, and P(x)=Cr(1+x?)/
(1—x) with Cr =4/3 is the standard Altarelli-Parisi
kernel [6]. In the limit of P? — oo first, A ~ u?/P?, the
first term is power-suppressed and the second term is the
standard AP result. However, in the limit of u? — oo first,
which is of our interest here, the first term is linearly
divergent, whereas the second term becomes In(uP?/A?).
The connection of the two limits is reflected through the
following factorization theorem up to power corrections,

q(x, u? P?) = [: %ZG, %)q(y, w?)
+ O(A?/(P)?, M2 /(P (11)

where Z has a perturbative expansion in «j,

Z(x, w/P?) = 8(x — 1) + ;—;Z(')(x, w/P) + ... (12)

FIG. 1. One-loop correction to the parton distribution in
Eq. (7) in A* = 0 gauge.
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with ZM = T(x)(u/P?) + P(x) In(P?/ ). Taking P? — o0
first yields Z(x, u/P?) = 8(x —1). Thus the large
logarithmic dependence on P? in g(x, w?, P?) can be trans-
formed into the renormalization scale dependence through
the above matching condition. On the lattice, the matching
must be recalculated up to a constant accuracy using the
standard approach [7].

Therefore, Eq. (11) can be used to calculate the parton
distribution g(x, #?) on the lattice by measuring the time-
independent, nonlocal quark correlator #(z)y*L(z, 0)(0)
with L(z, z9) = exp(—ig fZO d7’A*(Z')) in a state with
increasingly large P (maximum ~1/a with a denoting
lattice spacing). Because the smallest and the largest
momenta on the lattice is 1/L.a and 1/a, respectively,
the smallest x that one can resolve is 1/L_, with L, the
number of lattice sites in the z direction. Thus to reach
x = 1072, one has to have 100 lattice sites. On the other
hand, the present approach can get a reasonable description
of large x partons, emphasized by higher moments of the
distribution. Thus, the method is in a sense complementary
to the traditional moment approach. On the other hand, for
a fixed x, large P implies large k%, and hence small z.
Thus, a fast nucleon experiences a Lorentz contraction
in the z direction which requires increasing resolution
(anistropic lattices such as ones used for spectroscopy
calculations [8]) to study its longitudinal structure.

The above approach can be generalized to any light-cone
correlations in hadron physics. A partial list of interesting
physical quantities includes (i). Generalized parton distri-
butions (GPDs) [9], for which one has the same twist-two
operators, but the external states are off-diagonal. Thus, for
example, the GPDs E(x, &, 1) and H(x, &, f) can be calcu-
lated from the following matrix elements,

Pl = [SE e 122y
X L(=z/2,2/2)(z/2)|P), (13)

with P+ P =2(0,0,P), in the P'—o0, ¢=
(P? — P?)/P?, x = k*/P*-fixed limit. Similarly one can
obtain other twist-two GPDs with different insertions of
the Dirac matrix and nucleon polarization states. Thus one
can now explore the three-dimensional dependence on x, &
and ¢ in full detail without model assumptions [10].
(i1). Transverse-momentum dependent (TMD) parton dis-
tribution [11]. For the Dirac matrix y?, for example, we can
obtain the following TMD,

qx ki, P, u?) = f j_zdzﬂ K TEFI(P| (7, 2)
T
X LY(*00; (71, 2))y*L(*+00;0) 4 (0)| P),
(14)

and  L(*o0;(Fy,2) =

. The dependence on P° now contains

where P?* must be
—i T A A
oig [T AL

large

large logarithms InP? and does not disappear in the large
P? limit, and therefore is shown in the function explicitly.
One can derive an evolution equation for P* [11]. The
gauge links here extend from the location of the quark
field to *oo alone the z direction only, and therefore they
involve only the A? component of the gauge potential. Here
*o0o corresponds to two different kinematic conditions in
which the distributions are probed. In gauge choices where
gauge potential vanishes at infinity, the above expression is
gauge invariant. However, for a finite lattice with all
gauges averaged over, the two gauge links must be con-
nected by another gauge link L((7;, *00); (0, =00)) in the
transverse-space direction. Similar expressions work for
TMDs defined with other Dirac structure. An exploratory
study of x-moments of TMD distributions has been made
on the lattice where gauge links are taken as staple in
spatial directions [12]. The connection to light-cone
kinematics is made through invariant decompositions, not
through boosts, although the distributions themselves are
defined at large P°. (iii). Wigner distributions [13], which
are generating functions for both GPDs and TMDs. The
definition follows from a TMD operator sandwiched in a
nonforward nucleon states. Thus one can calculate them in
the large P* limit as, for example,

W()C, kJ_, bJ_,PZ, ,U,Z)
_ [j_zdzAldz;le—iAl~blei(zk2+/2l?l)
a

X (P (P, 2)LT (2005 (7, 2))y*L(£00;0) 4 (0)| P),
(15)

where A| = (P’ — P), and again a transverse gauge link
is needed to ensure gauge invariance on a finite lattice. We
also note that in the large P* limit, the P? dependence does
not disappear. (iv). Light-cone amplitudes, which are the
matrix elements between the hadron states and the QCD
vacuum, of the light-cone correlations of the quark and
gluon interpolating fields. We can now calculate them as
the matrix element of spatial correlation in the large mo-
mentum limit. For example, the leading light-cone ampli-
tude of the 7" meson recovers as the large P* limit of

Bolx, P2PE = [ L o 010y ysLO, Dl (P
(16)

These light-cone amplitudes can be probed from the hard
exclusive processes such as the form factors [14,15]. There
has been much discussion about the x dependence of ¢(x)
amplitude in the literature. (v). Light-cone wave functions.
In the light-front coordinates, the nucleon state can be
written as an infinite sum of Fock states with wave-
function amplitudes [3]. In a series of publications [16],
we have systematically classified the wave-function ampli-
tudes for pion and proton up to four partons, and connected
them with the matrix elements of quark and gluon
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correlations on the light-cone and transverse directions. All
these are gauge invariant when light-cone gauge links are
inserted from the locations of the fields to the infinity along
the light-cone direction. These amplitudes again can be
calculated on the lattice as the infinite-momentum limit of
the similar correlation functions with fields connected by
gauge links going to infinity along the z direction. One
important application is to the exclusive decays of B
mesons where many factorization formulas have been
derived with light-cone wave functions as a part of the
decay amplitudes [17]. (vi). Higher-twist parton distribu-
tions. The complete list of twist-two, -three, and -four
parton distributions in unpolarized, longitudinally polar-
ized and transversely-polarized nucleon has been worked
out in the literature [18]. They all contains quark and
gluons fields separated along the light cone. In the spirit
of this paper, they can be obtained from related spatial
correlation functions with gauge links along the z direction
in the limit of P?*— oo. In particular, the jet quenching
parameter § might be calculated this way [19].

It will be interesting to see to what extent these quanti-
ties can now be explored in lattice QCD calculations.

In conclusion, I have shown that the light-cone correla-
tions of quarks and gluons can be calculated by boosting
the matrix elements of spatial correlations to a large
momentum. This is particularly useful for lattice QCD
calculations of these experimental observables which
have been very difficult to tackle from the first principle
in the past. To be sure, studying a large momentum hadron
on the lattice is computationally still challenging, but at
least this could be achieved when computational power
continues improving.
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