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In classical mechanics, performing a measurement without reading the measurement outcome is

equivalent to not exploiting the measurement at all. A nonselective measurement in the classical realm

carries no information. Here we show that the situation is remarkably different when quantum mechanical

systems are concerned. A nonselective measurement on one part of a maximally entangled pair can allow

communication between two parties. In the proposed protocol, the signal is encoded in the choice of the

measurement basis of one of the communicating parties, while the outcomes of the measurement are

irrelevant for the communication and therefore may be discarded. Different choices for the (nonselective)

measurement correspond to different signals. The implication of the study of measurements in quantum

mechanics is considered. The scheme is studied in a Hilbert space of prime dimension.
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An important distinction between classical and quantum
measurement is that the latter implies an inevitable distur-
bance to the measured system. In the present work, we
show that this disturbance is trackable to the extent that it
may be used for communication. Thus we study nonselec-
tive measurements where the outcomes are not recorded.
Such measurements within the classical theory do not carry
information and hence cannot be used for communication
[1,2]. Here we show how nonselective measurements on
one part of a quantum system of a maximally entangled
pair can be used to encode and eventually communicate
information. In the proposed protocol the basis, i.e., the
choice, of the (nonselective) measurement is the signal.
The outcomes of the measurement are totally irrelevant.
The trackable choice of measurement (rather than its
outcome) analysis allows a novel interpretation of quantum
measurements. Thus a quantum state does, in general
[3–5], imply contextual values for measurable dynamical
variables. Hence it is attractive to interpret our result as
suggesting that quantum measurement is built up of two
stages. The first stage, to be associated with the nonselec-
tive measurement, elevates a particular set of dynamical
variables (those labeling the basis in our case) to reality
(i.e., having a prescribed value). The state after this stage
is, in general, mixed. The second stage involves the deter-
mination of the value of the dynamical variable. This stage
has clear classical attributes.

Confining our study at the moment to a Hilbert space of
odd prime dimension d, we consider as alternative choices
for measurements the alternative mutual unbiased bases
(MUB). For prime dimension there are dþ 1MUB [6–12].
A possible set of dþ 1 MUB can be defined as follows.
The first basis is the computational basis fjnigd�1

n¼0,

composed of the d orthonormal eigenstates of the gener-

alized Pauli operator Ẑ, Ẑjni¼!njni, jnþdi¼ jni,
! ¼ eið2�=dÞ. The other d orthonormal bases are parame-
trized by b ¼ 0; 1; . . . ; d� 1. The kets that compose the d
remaining bases are given in terms of the computational
basis by [9]

jm;bi ¼ 1ffiffiffi
d

p Xd�1

n¼0

jni!bn2�2nm; b;m¼ 0;1; . . . ;d� 1: (1)

We shall designate the computational basis by b ¼ €0, and
depending on the context we may also denote the kets of
the computational basis jmi by jm; €0i. Thus, the dþ 1
bases are labeled by b ¼ €0; 0; 1; . . . ; d� 1.
The proposed communication protocol is described in

what follows. We assume that the two communicating
parties, Alice and Bob, agree beforehand upon a code,
associating messages with the parameters, b, specifying
the MUB. There is no classical communication between
Alice and Bob beyond this point. The protocol involves a
two d-level system (qudit) entangled state prepared by
Alice with one qudit available to Bob, who wishes to
communicate a message, b ¼ €0; 0; 1; . . . ; d� 1, to Alice.
To this end, Bob measures the part of the system that is
available to him in the basis parametrized with the b of his
message. He must complete the measurement yet may
ignore its outcome and then return the qudit to Alice.
This step renders values to a class of dynamical variables:
the complete set of commuting operators ðXZbÞn; n ¼
0; 1; . . . ; d� 1. Now Alice measures the two-qudit result-
ant state, deduces, almost always, the basis b used by Bob,
and, hence, decodes the message. The procedure is quantal
in that the signal corresponds to the basis of Bob’s
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measurement, that is, to the ‘‘alignment’’ of his instrument,
and in that the measurement outcomes are irrelevant and
may be unrecorded.

Choice of measurement basis as signal.—To establish
a communication channel, let Alice prepare one of
the following d3 two-qudit maximally entangled states
[13,14]:

jc; r; si1;2 ¼ 1ffiffiffi
d

p Xd�1

n¼0

jni1jc� ni2!sn2�2rn; (2)

with c, r, s ¼ 0; 1; . . . ; d� 1, and send one of the qudits,
say, the one labeled by 1, to Bob. We note that, for a given s
value, these states form an orthonormal, maximally
entangled, basis for the Hilbert space of the two qudits.
Thus, s labels the basis, and c and r label the d2 orthonor-
mal states within a basis. The reduced state for Bob’s qudit
is the completely mixed state.

To communicate a message to Alice, Bob measures his
qudit in one of the MUB labeled by b ¼ €0; 0; 1; . . . ; d� 1.
The message is his choice of the basis used for the
measurement. Bob may or may not record the measure-
ment outcome. This is of no relevance to the protocol.
After completing his nonselective measurement, Bob sends
the qudit back to Alice. The two-qudit state is described
now by

�1;2 ¼
Xd�1

m¼0

jm;bi1hm; bjc; r; si1;2hc; r; sjm; bi1hm;bj: (3)

We note in passing thatmaking a nonselectivemeasurement
in basis b is equivalent to performing a random unitary
transformation which is diagonal in the b basis [1]. To
retrieve the message, Alice now measures the two qudits
in the basis of preparation, fjc0; r0; si1;2gd�1

c0;r0¼0
of Eq. (2). The

probability to obtain an outcome which corresponds to the
basis state jc0; r0; si1;2 is

hc0; r0; sj�1;2jc0; r0; si1;2

¼ 1

d

(
�c;c0 for b ¼ €0;

�ðb�sÞcþr;ðb�sÞc0þr0 for b ¼ 0; 1; 2; . . . ; d� 1:

(4)

The arithmetics is modulo d. According to the above equa-
tion, based on the outcome of her measurement, Alice can
decode the message sent from Bob, that is, the basis of his
measurement. If the outcome corresponds to a state
jc0; r0; si1;2 with c � c0, Alice infers that b ¼ sþ ðr0 �
rÞ=ðc� c0Þ. Since she knows the values of c, r, c0, r0, and
s, she can calculate the message b. If, on the other hand,
c ¼ c0 and r � r0, Alice infers that b ¼ €0. The case of
c ¼ c0 and r ¼ r0 is inconclusive for Alice. The inconclu-
sive outcome occurs with probability 1=d. In that case, the

preparation state and the detection state of the two qudits is
the same, and she does not gain any information about
Bob’s message. Hence the decoding table is

c � c0 ! b ¼ sþ r� r0

c0 � c
;

r � r0; c ¼ c0 ! b ¼ €0;

r ¼ r0; c ¼ c0 ! inconclusive:

(5)

For the even prime dimension d ¼ 2, by plugging the
imaginary unit i instead of ! in all of the above equations,
one retrieves the same decoding table (5). The protocol is
schematically drawn in Fig. 1.
Conclusions and remarks.—In conclusion, we showed

how nonselective measurements in MUB on one part of an
entangled pair could be used to encode information. The
scheme uniquely utilizes quantum features of the system,
since performing nonselective measurements on classical
systems (no matter how correlated they are) cannot carry or
manipulate information [1,2]. Alternatively, the trackabil-
ity of the nonselective measurement allows a novel view of
quantum measurement. Thus we may view a quantum
measurement as a two-stage process. The first, to be asso-
ciated with the nonselective part, involves the promotion
of a set of dynamical variables (labeled, in our case, by
the basis b) to reality (i.e., [5] having a definite value).
After this stage, in general, the state is a mixed state.
The second stage involves the determination of the out-
come among these values. This stage allows a classical
interpretation: The experiment determines a possible pre-
assigned value. Dealing, as we do in this work, with an
entangled state renders the stages separable: Bob’s mea-
surement (unknown to Alice) consummates a first stage for
the two-particle system. The sequential measurement, by
Alice, selects possible values of the two-particle system
allowed by the (mixed) state that resulted from Bob’s
measurement.

FIG. 1. The scheme of the communication protocol.
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In the considered protocol, by sending a qudit, Bob is
able to transfer, on average, more than log2d bits of infor-
mation to Alice. This is, in some respect, a form of dense
coding. We note for comparison that superdense coding
[15] achieves 2log2d bits per qudit sent from Bob to Alice.
However, in the superdense coding scheme specific unitary
transformations are used for the encoding, while here non-
selective measurements, or, equivalently, random unitary
transformations, are utilized. Though, in its present form,
the protocol cannot be used for secure communication, we
leave it as an open question whether one could consider
variations of the present protocol that would render it
suitable for cryptography tasks. Preliminary study indi-
cates that the proposed scheme can be generalized to
encompass prime-powers dimensions. Finally, this proto-
col exemplifies how tasks which seem impossible by clas-
sical reasoning are realized in quantum systems.

A.K. thanks Professor B.-G. Englert for fruitful discus-
sions and for his insightful comments. The Centre for
Quantum Technologies is a Research Centre of Excellence
funded by the Ministry of Education and by the National
Research Foundation of Singapore. This research was sup-
ported in part by NSF Grant No. PHY-1212445.

[1] J. Schwinger, Quantum Mechanics: Symbolism of Atomic
Measurements, edited by B.-G. Englert (Springer, Berlin,
2001).
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