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It is a fundamental problem in physics of what principle limits the correlations as predicted by

our current description of nature, based on quantum mechanics. One possible explanation is the ‘‘global

exclusivity’’ principle recently discussed in Phys. Rev. Lett. 110, 060402 (2013). In this work we show

that this principle actually has a much stronger restriction on the probability distribution. We provide a

tight constraint inequality imposed by this principle and prove that this principle singles out quantum

correlations in scenarios represented by any graph. Our result implies that the exclusivity principle might

be one of the fundamental principles of nature.
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Introduction.—Quantum correlations between observ-
ables are contextual and nonlocal such that quantum
mechanics (QM) is incompatible with either noncontextual
hidden variable (NCHV) theories [1–3] (i.e., predictions
of QM cannot be explained by assuming that observ-
ables have predefined values which are independent of
our choice of measurements) or with local hidden variable
(LHV) theories [4] (i.e., as a special case of noncontex-
tuality, results of which are independent of spacelike sepa-
rated measurements). Noncontextuality (NC) inequalities
[5–9] and Bell inequalities [10–13] (which are a particular
type of NC inequalities that require spacelike separated
tests) are the basic tools to characterize and reveal quantum
correlations. Such correlation inequalities are satisfied
by any HCHV and LHV models but are violated by QM.
Intriguingly, the maximum quantum violations of these
inequalities are bound in a very special way. A fundamen-
tal open problem is what is the physical principle that
prevents QM from being more contextual [14,15] or
more nonlocal [16–19]?

Recent approaches to the understanding of quantum
correlations address this problem into generalized proba-
bilistic theory [20] and graph theory frameworks [21–24].
The main idea is that each correlation inequality can be
associated with a group of events, whose relationships can
be represented by a graph G. G is such a graph that each
of its vertices represents an event and two vertices of the
graph are adjacent if the corresponding events are mutually
exclusive. Correlation inequalities can thus be considered
as the sum S of the probabilities of these events. As a
convex combination of probabilities, S plays a crucial role
in the investigation of quantum correlations since (i) it
provides generalized forms of correlation inequalities
beyond quantum formalism and (ii) it might be related
directly to the boundaries of quantum probability distribu-
tions, as will be discussed in the following.

It has been shown [21,22] that for a given set of events
fuig with the corresponding graph G, the maximum value
of S for NCHV and LHV theories is the independent

number of G, �ðGÞ. While the upper bound for S predicted
by QM is given by the Lovász number [25] of G:

#ðGÞ ¼ Max
X
i

jh’jviij2; (1)

where j’i and jvii are unit vectors in Eucledian space and
the maximum is taken in any dimensions over all possible
j’i and orthogonal representation fjviig (which means
that each vector jvii is assigned to a vertex of G and two
vectors are orthogonal if their corresponding vertices are
adjacent). fjh’jviij2g are QM allowed probability distribu-
tions. S always reaches the Lovász number in the minimum
dimension that required to produce the orthogonal repre-
sentation of a graph [26]. The main idea to understand the
origin of the upper bound #ðGÞ of S is thus to identify
‘‘natural’’ information principles, formulated only with
the constraints on probability distributions, and also with
an intrinsically multipartite structure [27,28], that prevent
stronger correlations than QM.
One possible explanation is from the exclusivity princi-

ple (EP) [21,22]: the sum of probabilities of pairwise
exclusive events cannot exceed 1. By pairwise exclusive
we mean that if we check any two events of a group of
events together, only one of them can occur. On the other
hand, a group of events are jointly exclusive means that if
we check all the events together, only one of them can be
true, no matter how many times and in which order they
are tested. Note that Bool’s axiom [29] on exclusivity only
demands that the sum of the probabilities of jointly exclu-
sive events is less than 1, while in general probability
framework pairwise exclusive events are not necessarily
jointly exclusive, since tests on different events may affect
each other. Consequently, this principle indeed imposes a
nontrivial restriction on the potability distributions. This
simple principle originally follows from Specker’s conjec-
ture on the basic principle of QM (see Ref. [30] for a
survey), and has been used recently [21–24] to investigate
its fundamental role in bounding the quantum correlations.
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Denote fPig as the probabilities for a given set of events
fuig. Clearly, according to this principle, the sum of prob-
abilities of any pairwise exclusive events in fuig cannot
exceed 1. Thus, fPig should at least satisfy

X
i2C

Pi � 1; (2)

where C is any such subset of fuig that events in C are
pairwise exclusive. Under this constraint, the maximum
value of S is the so-called fractional packing number,
��ðGÞ, of the corresponding graph G. It has been shown
[21] that constraint in inequality (2) singles out quantum
correlations for a class of scenarios represented by graphs
with their fractional packing numbers equal to their Lovász
numbers. These scenarios include Bell inequalities for
Greenberger-Horne-Zeilinger states [10] and graph states
[11–13], and some bipartite Bell inequalities [31,32] as
well as all the state-independent NC inequalities in
Ref. [7]. In a more recent work [22], by applying the
exclusivity principle to two copies of the Klyachko-Can-
Binicioglu-Shumovsky (KCBS) [6] experiments, Cabello
showed that the upper bound of KCBS inequality for
QM is exactly the maximum value allowed by the EP.
The quantum violation of KCBS inequality has been ex-
perimentally tested with photons [33,34]. However, when
applying this principle to multiple copies of Clauser-
Horne-Shimony-Holt(CHSH) experiments, the answer
lead to an open question in graph theory. It is still unclear
whether the maximum quantum violation of CHSH
inequality is tightly bound by the EP, or, more generally,
whether the EP can single out quantum correlations in
scenarios represented by any graph. Nevertheless, applying
only constraint in inequality (2) has been shown [24] to be
insufficient to single out quantum probability distributions,
even if infinite copies of the original correlation scenarios
are taken into account.

In the following we show that, without any additional
assumptions, the EP actually has a much stronger restric-
tion on fPig than inequality (2). We provide a tight
constraint inequality on fPig and show that this principle
indeed singles out nature’s maximum correlations for any
graph.

Probability distributions allowed by the EP.—Given a
set of events fuig and the corresponding graph G, we now
consider another group of events fvigwhich are completely
independent with fuig. Events fvig are constructed with the
relationships that vi and vj are mutually exclusive if ui is

not exclusive with uj. Therefore, the corresponding graph

of events fvig is exactly the complementary graph of G
(graphs depicted in Fig. 1 are examples of complementary
graphs). We now consider ui and vi together as a joint
event uivi (which means that event uivi happens if and
only if ui and vi both happen). Clearly, events fuivig form
a pairwise exclusive events set. Donate fPig and fP0

ig
the EP allowed probability distributions of fuig and fvig,

respectively. As ui and vi are completely independent, the
joint probability for event uivi will be PiP

0
i.

Note that the joint events fuivig are still real events,
despite that they are constructed by jointly viewing two
sets of independent events. A physical principle should be
universal such that the probability distributions of events
fuivig must be restricted by the exclusivity principle

X
i

PiP
0
i � 1: (3)

Thus, the constraint on fPig is that fPig must satisfy
inequality (3) for any EP allowed probability distribution
fP0

ig on �G. It is a much stronger restriction imposed by the
EP since all possible solutions fPig for this inequality
automatically satisfy constraint (2). The above inequality
is one of the main results in this work. We remark here that
the ‘‘global’’ property assumed in Ref. [22] actually comes
from the universality of a physical principle. Instead of
imposing restrictions only on the probability distributions
on the given graph G under consideration, as in inequality
(2), the exclusivity principle exerts constraints upon the
whole probability distribution set, including all graphs.
It demands compatibility among different graphs. In other
words, EP allowed probability distributions are such that
they cannot generate joint probability distributions which
do not respect the EP. It is in this sense we suggest calling
this principle ‘‘consistent exclusivity.’’ A similar proposal,
while under different considerations, has also been dis-
cussed in [30,35].
The reason why applying constraint in inequality (2) to

two copies of KCBS experiments after assuming global
exclusivity in Ref. [22], singles out that quantum contex-
tuality can be explained as the following: The graph corre-
sponding to KCBS inequality is a pentagon, whose
complementary graph is exactly itself. The OR product of
two pentagons is a 25-vertex graph which contains five
5-vertex complete graphs. Apply inequality (2) to each of
the five complete graphs would cover the constraint in ineq-
uality (3). Actually, as a pentagon is self-complementary,

(a) (b)

FIG. 1. (a) Graph G of the relationships of the 8 events fuig
involved in CHSH inequality. (b) Graph of the relationships
of the 8 events fvig completely independent with events fuig.
Their relationships form the complementary graph of G. This
graph is the 8-vertex (1,2)-circulant graph Ci8ð1; 2Þ. Joint events
fuivig generate the 8-vertex complete graph.
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inequality (3) is reduced to a self-constraint inequalityP
P2 � 1, which immediately gives us the maximum

value of S.
In general cases, calculating the upper bound for the sum

of Pi comes down to a linear optimization problem subject
to constraints in inequality (3). Now the only problem is
that so far we do not know what is exactly the possible
probability distribution fP0

ig on �G. In fact, EP allowed
distributions fP0

ig are also bound by inequality (3) ranging
over all EP allowed fPig. This global property, that all
probability distributions should be compatible with each
other, makes it difficult to estimate the maximum value of
S using inequality (3). Our approach for this problem is to
find a subset of all EP allowed fP0

ig on �G.
Consider now the QM allowed probability distributions

on the given graph G and �G, which (in orthogonal repre-
sentation) can be written as fjhc juiij2g and fjh’jviij2g,
respectively. We have the following inequality:

X
i

jhc juiij2jh’jviij2 � 1: (4)

This is due to the fact that fjuii � jviig form an orthogonal
system such that

P
ijhc juiij2jh’jviij2 ¼

P
ijðhc j � h’jÞ�

ðjuii � jviiÞj2 is always less than 1 for arbitrary unit vector
jc i � j’i.

The meaning of inequality (4) is that all QM allowed
probability distributions on graph G and �G automatically
satisfy the restriction imposed by the EP in inequality (3).
Generally, this fact can be seen from a simple property of#
function of any complete graphGcomplete (in which any two

vertices are adjacent):

#ðGcompleteÞ ¼ 1; (5)

which means that in QM, the sum of probabilities of any
group of pairwise exclusive events cannot exceed 1.
Namely, for any given graph, probability distributions
allowed by QM constitute the subset of probability distri-
butions allowed by the EP.

Note that since the EP might allow probability distribu-
tions that cannot be realized in the orthogonal representa-
tion, it is nontrivial to say that maximum quantum
violation is exactly the upper bound imposed by the EP.
In other words, we cannot use the orthogonal representa-
tion on graph G to estimate the upper bound of the sum
of Pi. However, this feature provides a group of possible
solutions of fP0

ig, that is, all QM allowed probability
distribution jh’jviij2 on �G. fPig should at least satisfy
inequality (3) when fP0

ig adopts these distributions.
It is worthwhile to mention that no additional physical

assumptions were made in the above discussions about
quantum probability distributions. The point is that proba-
bility distributions generated from orthogonal represen-
tations provide a possible mathematical solution set for
inequality (3).

By ranging fP0
ig over all unit vector j’i and orthogonal

representation fjviig on �G, we now get a relatively weaker
constraint for fPig: X

i

Pijh’jviij2 � 1: (6)

This constraint actually, as we will see, is sufficient to
single out quantum correlations in any graph.
Maximum quantum violation of CHSH inequality.—We

now illustrate how the EP singles out the maximum quan-
tum violation for CHSH inequality [36].
The bipartite scenario corresponding to CHSH inequal-

ity involves eight events [22] with their relationships being
represented by the graphG depicted in Fig. 1(a). The upper
bounds of CHSH inequality imposed by noncontextual
local hidden variable (NCLHV) theory, QM (the bound is
known as Tsireson’s bound [37]) and nonsignaling(NS)
[16] can be expressed as the following:

X
Pi � 3NCLHV � 2þ ffiffiffi

2
p

QM � 4NS (7)

where the sum is extended to all the 8 events. Many efforts
have been made [17–19,38] to explain why QM stops
at Tsireson’s bound despite supraquantum correlations
generated from a PR box [16] (i.e., a two-party device
producing jointly probabilities which satisfy nonsignaling)
does not violate nonsignaling. In Ref. [22], Cabello showed
that the global exclusivity rules out nonsignaling with

a lower bound 8=
ffiffiffi
5

p � 3:5778. (The same value was also
obtained in [23] by assuming local orthogonality, which is
essentially the same idea as global exclusivity).
Here we use the constraint in inequality (6) and range all

possible orthogonal representations on Ci8ð1; 2Þ, the com-
plementary graph ofG, as depicted in Fig. 1(b). Because of
the symmetry of G, we should expect that the CHSH
inequality reaches its maximum value with the eight evens
being assigned the same probability P, which is bound by

P
X jh’jviij2 � 1: (8)

This must be satisfied for any orthogonal representations
such that

P � 1

max
P
i
jh’jviij2

¼ 1

#ð �GÞ ; (9)

where the maximum ranges over all orthogonal represen-
tations on graph Ci8ð1; 2Þ and #ð �GÞ ¼ max

P
ijh’jviij2

is the well-known Lovász number for Ci8ð1; 2Þ, which is

8� 4
ffiffiffi
2

p
. We immidiately get the upper bound for CHSH

inequality imposed by the EP: 8Pmax ¼ 2þ ffiffiffi
2

p
, which is

exactly equal to the maximum quantum violation. It is
interesting while quite reasonable to see that this number
can be given by the complementary graph of the original
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graph of the 8 events. That is the result of the global
property of exclusivity principle.

Generalization of our result.—We now give a simple
proof to show that for correlation inequalities represented
by any graph, the upper bounds given by the exclusivity
principle are exactly the same as QM predicted, such that
quantum correlations are tightly bound by the exclusivity
principle.

As discussed above, probability distributions fPig on a
given graph G are restricted by inequality (6) ranging over
all orthonormal representations on �G, the complementary
graph of G. For a given normalized vector j’i and ortho-
normal representation fjviig, we pick out the minimum
value among fjh’jviij2g, which satisfies�X

i

Pi

�
minjh’jviij2 �

X
i

Pijh’jviij2 � 1; (10)

or

X
i

Pi � max
1

jh’jviij2
: (11)

Inequality (11) should hold for any normalized vector j’i
and orthonormal representation fjviig on graph �G. This
further gives us

X
i

Pi � min max
1

jh’jviij2
; (12)

where the maximum is taken over the given fvig and j’i
and the minimum ranges over all orthonormal representa-
tions fjviig and unit vectors j’i.

The right-hand side of inequality (12) equals to the
Lovász function for graph G (see Lemma 1 in Ref. [25]),
which is nothing but the maximum value for QM. The
equality in (12) can hold since the orthogonal representa-
tions of graph G generate a possible solution set for fPig,
which can achieve the maximum value #ðGÞ. Interestingly,
the tight bound is given by only ranging fP0

ig over the
subset of all EP allowed distributions on �G. This tells us
other possible distributions which are not covered by the
orthogonal representations, if there are any, will not give
even a lower bound than #ðGÞ.

Conclusion and conjecture.—In this work, we have pro-
vided further understanding of the global exclusivity prin-
ciple recently discussed in Ref. [22]. We show that this
principle actually has a much stronger restriction on the
probability distribution. Instead of imposing constraint
only on the given graph under consideration, this principle
imposes restriction on the whole probability structure
including all graphs. We have provided a constraint
inequality and show that this principle indeed singles out
quantum correlations represented by any graph. Namely,
quantum correlations are tightly bound by this simple
principle.

It is not yet unambiguously proven that the probability
distributions allowed by QM are all that are allowed by the

EP, but the indications are strong. What we can conclude
here is that even if the EP may provide a probability
distribution set which is larger than the quantum set, it
will not impose stronger restriction on the quantum corre-
lations revealed by the convex sum of probabilities. It is
in this sense we conjecture that the EP not only limits
quantum correlations, but also at least almost determines
the probability structure of quantum mechanics. Once the
probability structure is fully determined, any correlation
functions constructed from probabilities, aim at character-
izing the quantumness of correlations, are also determined.
Further works could focus on such correlation functions,
which have other advantages than the correlation inequal-
ities, and generalize them into the graph theory framework.
It is remarkable that our result implies the exclusivity

principle, like other physical principles such as uncertainty
and nonsignaling, might be one of the fundamental prin-
ciples of nature.
The author thanks A. Cabello and A. Acı́n for helpful

discussions.
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