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We introduce a notion of spectral singularity that applies for a general class of nonlinear Schrödinger

operators involving a confined nonlinearity. The presence of the nonlinearity does not break the parity-

reflection symmetry of spectral singularities but makes them amplitude dependent. Nonlinear spectral

singularities are, therefore, associated with a resonance effect that produces amplified waves with a

specific amplitude-wavelength profile. We explore the consequences of this phenomenon for a complex

�-function potential that is subject to a general confined nonlinearity.
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Introduction.—A spectral singularity of a complex scat-
tering potential is a mathematical concept introduced and
studied by mathematicians for more than half a century
[1,2]. This concept that applies only for nonreal scattering
potentials, was recently shown to have an intriguing physi-
cal interpretation [3]: It corresponds to the energy of a
scattering state whose reflection and transmission coeffi-
cients diverge. This observation has motivated identifying
spectral singularities with certain zero-width resonances
and led to the study of their physical implications [3–5].
In optics, a spectral singularity gives rise to lasing at
the threshold gain [6]. Its time reversal corresponds to a
coherent perfect absorption (CPA) of light [7] that is also
called antilasing. The observation of the latter reported in
Ref. [8] may be considered as an experimental evidence for
the physical relevance of spectral singularities.

Once one creates a spectral singularity in an optically
active material [3,4], it begins amplifying the background
noise and functions as a laser. One may argue that a realistic
treatment of this phenomenon should also take into account
the nonlinearities associated with the production of high-
intensity radiation in the gain region. This provides ourmain
physical motivation for the study of the meaning and behav-
ior of spectral singularities for nonlinear operators, a task
that to the best of our knowledge has not been considered
previously [9]. The search for an appropriate nonlinear
extension of the notion of a spectral singularity is particu-
larly important not only because it has been an open mathe-
matical problem for several decades, but also because it can
pave the way for the discovery of the nonlinear analogs of
interesting physical phenomena such as threshold lasing [6],
antilasing [8], and CPA lasers [7] in areas other than optics.

Motivated by the physical meaning of a spectral singu-
larity of a linear Schrödinger operator [3], in this Letter
we propose a definition for a spectral singularity of the
nonlinear Schrödinger operators H� of the form

H�c ðxÞ :¼�c 00ðxÞþvðxÞc ðxÞþ��ðxÞfðjc ðxÞj; xÞc ðxÞ;
(1)

where v is a rapidly decaying complex scattering potential,
� is a nonzero real coupling constant, �ðxÞ :¼ 1 for x 2
½0; 1� and �ðxÞ :¼ 0 for x =2 ½0; 1�, and f is a real-valued
function. The presence of � in (1) shows thatH� involves a

confined nonlinearity. A concrete example is the confined
Kerr nonlinearity, with fðjc ðxÞj;xÞ :¼jc ðxÞj2, that appears
in the study of Bose-Einstein condensates [10] and has
well-known applications in optics.
The problem of introducing spectral singularities for

nonlinear operators is plagued with severe mathematical
difficulties associated with proposing an appropriate defi-
nition for the spectrum and a suitable scattering theory for
these operators. The simple idea of considering confined
nonlinearities, that is mainly motivated by physical con-
siderations [11], allows for circumventing these difficul-
ties. As we show below, this idea plays a central role in our
ability to define a useful notion of a nonlinear spectral
singularity (NSS).
The time-independent nonlinear Schrödinger equation

corresponding to (1) is given by

H�c ðxÞ ¼ k2c ðxÞ; (2)

where k is a complex number. It is easy to see that outside
the interval [0,1], (2) coincides with the linear time-
independent Schrödinger equation

�c 00ðxÞ þ vðxÞc ðxÞ ¼ k2c ðxÞ: (3)

Jost solutions and nonlinear spectral singularities.—
Consider the linear operator H :¼ �@2x þ vðxÞ, whose
continuous spectrum is [0,1). The eigenvalue equation
for H, i.e., (3), admits the so-called Jost solutions c k�
that fulfil the asymptotic boundary conditions: c k�ðxÞ !
N�e�ikx as x ! �1, for some nonzero complex numbers
N�. In particular,

lim
x!�1½c

0
k�ðxÞ � ikc k�ðxÞ� ¼ 0: (4)

The Jost solutions, c kþ and c k�, are the scattering solu-
tions of (3) corresponding to incident waves from the left
and right, respectively.
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Definition 1.—A positive real number k2 is called a
spectral singularity of H if c k� are linearly dependent
[2], i.e., c k� / c kþ.

The following is a simple consequence of this definition.
Theorem 1.—A positive real number k2 is a spectral

singularity of H if and only if there is a solution c k of
(3) such that limx!�1e�ikxc kðxÞ exist as nonzero complex
numbers, and c k satisfies

lim
x!�1½c

0
kðxÞ � ikc kðxÞ� ¼ 0: (5)

We introduce a notion of spectral singularity for the non-
linear operator (1) by promoting Theorem 1 to a definition.

Definition 2.—A positive real number k2 is said to be a
spectral singularity of H�, if there is a solution c k of (2)

such that limx!�1e�ikxc kðxÞ exist as nonzero complex
numbers, and c k satisfies Eq. (5).

In what follows we use the term NSS for a spectral
singularity of the nonlinear operator (1).

In order to ensure that the physical interpretation of
spectral singularities is left intact, we demand the existence
of the Jost solutions of the nonlinear equation (2). We
identify them with the solutions that satisfy the asymptotic

boundary conditions (4), denote them by c ð�Þ
k�, and keep

using c k� for the Jost solutions of the linear equation (3).
Moreover, because the nonlinearity is confined to [0,1] and

c ð�Þ
k� are continuously differentiable,

c ð�Þ
k�ðxÞ ¼ c k�ðxÞ for x � 0;

c ð�Þ
kþðxÞ ¼ c kþðxÞ for x � 1:

(6)

In particular,

c ð�Þ
k�ð0Þ ¼ c k�ð0Þ; c ð�Þ0

k� ð0Þ ¼ c 0
k�ð0Þ; (7)

c ð�Þ
kþð1Þ ¼ c kþð1Þ; c ð�Þ0

kþ ð1Þ ¼ c 0
kþð1Þ: (8)

We can view Eqs. (7) and (8) as initial conditions for the
differential equation (2). Solving the initial-value problem

defined by Eqs. (2) and (7) for x > 0 gives c ð�Þ
k� on [0, 1).

Similarly, solving the initial-value problem defined by

Eqs. (2) and (8) for x<0, we find c ð�Þ
kþ on (�1, 0].

These together with Eqs. (6) specify c ð�Þ
k� throughout R.

Note, however, that this procedure works provided that the
above initial-value problems have global solutions. Indeed,
because the nonlinearity is confined to [0, 1], it suffices to
make sure that they have solutions on [0,1]. The spectral
singularities of H� are given by the values of k2 for which

at least one of the Jost solutions c ð�Þ
k� satisfies the condi-

tions listed in Definition 2.
Potentials vanishing outside [0,1].—In Refs. [12,13], we

consider linear spectral singularities (LSSs) of potentials
that vanish outside [0, 1]. This allows for making more
definitive statements about the behavior of these spectral
singularities. The same holds for the NSSs.

Suppose that vðxÞ ¼ 0 for x =2 ½0; 1�. Then, Eqs. (6)–(8),
respectively, take the form c ð�Þ

k�ðxÞ ¼ N�e�ikx for x � 0,

c ð�Þ
kþðxÞ ¼ Nþeikx for x � 1, and

c ð�Þ
k�ð0Þ ¼ N�; c ð�Þ0

k� ð0Þ ¼ �ikN�; (9)

c ð�Þ
kþð1Þ ¼ ~Nþ; c ð�Þ0

kþ ð1Þ ¼ ik ~Nþ; (10)

where ~Nþ :¼ Nþeik. In order to determine c ð�Þ
k�ðxÞ for

x > 0, we solve the initial-value problem defined by (2)
and (9) on [0,1]. The solution, that we denote by �k, gives

the value of c ð�Þ
k�ðxÞ for x 2 ½0; 1�, provided that it exists.

For x > 1, the general solution of Eq. (2) is a linear
combination of plane waves. This observation together

with the requirement that c ð�Þ
k� is continuously differentia-

ble at x ¼ 1 give

c ð�Þ
k�ðxÞ ¼

8>>><
>>>:
N�e�ikx for x< 0;

�kðxÞ for 0� x� 1;

eikðx�1ÞFþðkÞ�e�ikðx�1ÞF�ðkÞ
2ik for x> 1:

(11)

Here �k is the solution of Eq. (2) on [0,1] that satisfies

�kð0Þ ¼ N�; �0
kð0Þ ¼ �ikN�; (12)

and F�ðkÞ :¼ �0
kð1Þ � ik�kð1Þ. Similarly, we obtain

c ð�Þ
kþðxÞ ¼

8>>><
>>>:

eikxGþðkÞ�e�ikxG�ðkÞ
2ik for x < 0;

�kðxÞ for x 2 ½0; 1�;
~Nþeikðx�1Þ for x > 1;

(13)

where G�ðkÞ :¼ � 0kð0Þ � ik�kð0Þ and �k is the solution of

Eq. (2) on [0,1] that fulfils the initial conditions: �kð1Þ ¼
~Nþ and � 0kð1Þ ¼ ik ~Nþ.
Because c ð�Þ

kþ and c ð�Þ
k� respectively correspond to the

scattering states with an incident wave from the left and
right, we can use Eqs. (11) and (13) to determine the left
and right reflection and transmission amplitudes, R and T.
This gives

Rl ¼ �G�ðkÞ
GþðkÞ ; Tl ¼ 2ike�ik ~Nþ

GþðkÞ ;

Rr ¼ � e�2ikFþðkÞ
F�ðkÞ ; Tr ¼ � 2ike�ikN�

F�ðkÞ ;

(14)

where the superscripts l and r stand for left and right,
respectively. For � ¼ 0, G� (respectively F�) are propor-
tional to ~Nþ (respectively N�), and the latter drops out
of Eq. (14).

Having obtained the explicit form of c ð�Þ
k�, we can

impose the condition that they yield a NSS. Demanding

that c ð�Þ
kþ satisfies Eq. (5), we find GþðkÞ ¼ 0. Similarly,
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imposing Eq. (5) on c ð�Þ
k� gives F�ðkÞ ¼ 0. Therefore, in

view of Eq. (14), NSSs can again be interpreted as the
energies of certain zero-width resonances [3].

The condition that either c ð�Þ
kþ or c ð�Þ

k� gives rise to a

NSS is equivalent to demanding that � and � are solutions
of the boundary-value problem defined on [0,1] by Eq. (2)
and the outgoing boundary conditions:

c 0
kð0Þ � ikc kð0Þ ¼ 0; c 0

kð1Þ þ ikc kð1Þ ¼ 0: (15)

It is easy to see that for potentials vanishing outside [0,1]
Eqs. (15) are equivalent to Eq. (5). In particular, they are
invariant under the parity (P ) transformation: x ! 1� x.
This is a manifestation of the fact that, similarly to the
LSSs [14], the P symmetry of the boundary conditions (5)
or (15) leads to an intrinsic P symmetry of NSSs. This
means that once the parameters of the system are tuned to
realize a spectral singularity, it will amplify the back-
ground noise and begin emitting radiation of the same
wavelength from both ends.

The main difference between LSSs and NSSs is that the
resonance effect corresponding to the latter is intensity
dependent. The system amplifies an incident plane wave
of negligible amplitude and produces outgoing waves of
the same wave number k and a particular k-dependent
sizable amplitude. This intensity-dependent resonance
effect may, for example, be used to devise a measurement
scheme that determines the wavelength of an incident wave
using the information about the intensity of the transmitted
wave.

Complex �-function potential.—Consider the potential

vðxÞ ¼ z�ðx� aÞ; (16)

where z is a complex coupling constant and a 2 ð0; 1Þ.
This potential supports a single LSS provided that z is
purely imaginary [15]. For this choice of v and the function
f given by fðjc ðxÞj; xÞ ¼ jc ðxÞj2, Eq. (2) admits analytic
solutions [16]. For real values of z, this model has appli-
cations in the study of Bose-Einstein condensates [17].
See also Refs. [18].

The study of the NSSs for the potential (16) requires
solving Eq. (1), that for 0< x < a and a < x < 1 takes
the form: c 00 þ k2c ¼ �fðjc ðxÞj; xÞc ðxÞ. This is equiva-
lent to

c ðxÞ ¼ c 0ðxÞ þ �
Z x

x0

Gðx; yÞfðjc ðyÞj; yÞc ðyÞdy; (17)

where c 0ðxÞ is the general solution of c 00 þ k2c ¼ 0,
Gðx; yÞ :¼ sin½kðx� yÞ�=k is the Green’s function for the
latter equation, and x0 2 ð0; 1Þ is arbitrary. Using this
equation to express the c ðyÞ appearing on its right-hand
side in terms of c 0 and G and repeating this procedure, we
can obtain a perturbative expansion for c ðxÞ where �
serves as the perturbation parameter. In the following we
consider a homogenous nonlinearity where f does not

explicitly depend on x, i.e., f ¼ fðjc ðxÞjÞ, and perform a
first-order perturbative treatment of the NSSs of Eq. (16).
First, we recall that substituting Eq. (16) in Eq. (1) is

equivalent to demanding that c is continuous at x ¼ a and

that c 0ðaþÞ ¼ c 0ða�Þ þ zc ðaÞ, where c 0ðaþ=�Þ stands
for the right/left derivative of c at x ¼ a. Next, we use
Eq. (17) to obtain a perturbative expression for the solution
�k of Eq. (2) in the interval [0,a) and use the continuity of
c at x ¼ 0 and the above matching condition for c 0 to
extend it to ½a; 1�. Finally, we demand that the result also
satisfies the second equation in Eq. (15). This gives a pair
of equations that we can solve to express z and �kð1Þ in
terms of k, a, and N� :¼ �kð0Þ. The result is

z ¼ 2ik

�
1þ �f�A

4k2

�
þOð�2Þ; (18)

and �kð1Þ ¼ e�2ikaN�½1þ ð�f�B=4k2Þ� þOð�2Þ, where
f� :¼ fðjN�jÞ, A :¼ e2ikð1�aÞ þ e2ika � 2, and B:¼
e2ikð1�aÞ�e2ikaþ2ikð2a�1Þ. Equation (18) is the condi-

tion under which c ð�Þ
k� yields a NSS. For � ¼ 0, it reduces

to z ¼ 2ik which determines the corresponding LSS

[13,15]. Similarly we find that c ð�Þ
kþ gives rise to a NSS

provided that we enforce Eq. (18) after replacing f� with
fþ :¼ fðjNþjÞ.
Let r and s denote the real and imaginary parts of z,

so that z ¼ rþ is. Noting that f� is real, we can solve
Eq. (18) for �f� and s in terms of a, k, and r. This gives

�f� � � kr

sink cos½kð1� 2aÞ� ; (19)

s � 2k�
�
cosk cos½kð1� 2aÞ� � 1

sink cos½kð1� 2aÞ�
�
r; (20)

where we use� to mean that we ignoreOð�2Þ. Because the
cosine is an even function, these equations are invariant
under the P transformation: a ! 1� a. Therefore, we can
confine our attention to the case that a � 1=2.
Equations (19) and (20) provide a reliable description of

the NSSs of the potential (16) provided that the right-hand
side of (19) is much smaller than k2. This implies that
0< jrj � j sink cos½kð1� 2aÞ�jk. In particular,

0< jrj � k; (21)

and for all integers m,

k �

(
�m for all a;
�ðmþ1=2Þ

1�2a for a � 1
2 :

(22)

Furthermore, Eqs. (20)–(22) give s � 2k. Figure 1 shows
the plots of �f� as a function of k for r ¼ 10�4 and
a ¼ 1=2, 1=3, 1=4, 1=5.
The following are some remarkable features of NSSs of

the �-function potential (16) that distinguish them from
their linear counterpart. Notice that they hold irrespective
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of the form of the nonlinearity profile fðjc jÞ. (1) The
condition for the creation of a NSS is highly sensitive to
the value of a. (2) Depending on the sign of �f�, there are
specific spectral gaps for NSSs. For example, as shown in
Figure 1, for �f� > 0 and a ¼ 1=3, no NSS arises for the
k=� values in the intervals [1.5,2], [3,4], [4.5,5], [6,7],
[7.5,8], [9,10], etc. In addition, the interval [0,0.5] is for-
bidden for all values of a whenever �f�>0. For �f� < 0,
NSSs reside on the spectral gaps of the case �f� > 0. In
particular, LSSs are continuously related to the NSSs of the
case �f� < 0. (3) There is always a minimum value of
j�f�j below which no NSS arises for k > �=2ð1� 2aÞ>
�=2 if a � 1=2 and k > � if a ¼ 1=2. We will refer to this
value of j�f�j as the nonlinearity threshold (NT).

Suppose that the above model provides a description of
an optical system consisting of a very thin planar slab of
high-gain material. Because s is proportional to the gain
coefficient [6], we can adjust the value of s by controlling
the pumping intensity. If j�f�j< NT, the system does not
lase and the incident wave does not undergo a substantial
amplification regardless of how large s is. Now, suppose
that j�f�j � NT. Then as we increase s starting from zero,
we find no amplification of the incident wave unless s
reaches 2k1, where k1 is the smallest value of k such that
(k, �f�) corresponds to a NSS. Because we can use (19) to

relate the values of �f� and k, we can determine one
in terms of the other. For a Kerr nonlinearity, where
�f� ¼ �jN�j2, we can, in principle, employ this scheme
to determine the frequency of the (incident) wave in terms
of the amplitude of the transmitted wave.
The rich structure depicted in Fig. 1 suggests other

potential applications of NSSs. For example, the parameter
a, that signifies the center of the �-function potential,
can also be used as a control parameter in an experimental
study of the above-mentioned frequency measurement
scheme. Another possibility is to use independent
frequency and intensity measurements together with the
information about the location of NSSs to determine the
coefficient of the Kerr and higher order nonlinearities of
the medium.
Concluding remarks.—In this Letter we introduced the

concept of a NSS for arbitrary confined nonlinearities and
explored their properties for potentials having a compact
support. In particular we explored in some detail NSSs of a
complex �-function potential and showed that they had
a much richer structure than their linear counterparts. Our
results for this very simple model suggest, among other
possibilities, a method for determining the frequency of an
incident wave by performing an amplitude measurement.
The results we report here may be viewed as a first step

toward the study of the applications of nonlinear spectral
singularities in various areas of physics. This might for
example lead to the discovery of the analogs of threshold
lasing and antilasing for nonlinear fields such as those
encountered in acoustics, Bose-Einstein condensates, fluid
mechanics, and even gravity.
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