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For scattering by potentials with attractive inverse-cube (� C3=r
3) tails, the threshold law for elastic

collisions is presented. The expansion of the scattering phase shift contains all terms up to and including

Oðk2Þ and only relies on the value of the threshold quantum number’s remainder � 2 ½0; 1Þ, which
accounts for short-range deviations of the full potential from the pure �C3=r

3 form. In contrast to

previous approaches, the threshold law presented provides a connection to the regular solution at zero

energy as well as to the position of a weakly bound s-wave state.
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Introduction.—We consider elastic collisions in the pres-
ence of isotropic interaction potentials that exhibit an
attractive inverse-cube long-range behavior �C3=r

3.
Such potential tails are generally attributed to an under-
lying dipole-dipole interaction. The interaction energy
between two permanent dipoles, for instance, is described
by the inverse-cube law in an anisotropic form. In the
absence of permanent dipole moments, the dipole-dipole
interaction operator also gives a nonvanishing first-order
contribution to the interaction energy when the two collid-
ing partners are alike but in different internal states that are
connected via a dipole transition [1]. This kind of interac-
tion is isotropic; it can, in principle, be either attractive or
repulsive and might—at large distances—be modified due
to retardation effects [2,3]. The nonretarded interaction
energy between a neutral, polarizable particle and a con-
ducting wall is also characterized by the long-range
�C3=r

3 behavior [4].
Both repulsive and attractive inverse-cube interactions

exhibit unique scattering properties. The leading term of
the effective-range expansion [5,6] for scattering by poten-
tials that fall off faster than 1=r3 is generally characterized
by a single parameter, i.e., the scattering length a [7]. It is
manifest in the regular radial s-wave solution at zero
energy, which is, beyond the interaction region, propor-
tional to (1� r=a). The need for modifications of the
conventional effective-range expansion in the presence of
long-range potentials was pointed out by Spruch,
O’Malley, and Rosenberg [8]. It turns out that the long-
range character of inverse-cube interactions precludes the
existence of a finite scattering length. A connection of the
low-energy scattering properties to the zero-energy solu-
tion has not been established so far.

For elastic collisions in the presence of a repulsive
þC3=r

3 interaction, the threshold law was first given by
Del Giudice and Galzenati in 1965 [9] and rederived from
exact solutions later by Gao [10]. As argued in Ref. [10],
the near-threshold behavior of the phase shift for the
repulsive case is essentially insensitive to the short-range
part of the potential. However, quite the contrary is the case

for potentials that are asymptotically attractive. Because of
its distinct singularity at the origin, the attractive �1=r3

potential alone does not support the existence of wave
functions that are suitable for the description of elastic
scattering. Only the deviation of the full potential from
the singular �1=r3 form at short distances, i.e., the exis-
tence of a repulsive core, enables elastic scattering pro-
cesses. The short-range part of the interaction potential
explicitly needs to be taken into account and has a crucial
influence on the collision process at low energies.
For attractive inverse-cube potential tails, the leading-

order term of the s-wave scattering phase shift was first
derived by Levy and Keller [11],

tan�0 ¼ � lnðk�3Þðk�3Þ þOðkÞ ; (1)

where the length �3 is associated with the asymptotic
�C3=r

3 form of the potential [see definition just below
Eq. (2)]. This simple formula (1) is widely known [12–15]
and offers a correct parametrization of the phase shift in the
immediate near-threshold regime. It does, however, neglect
all further terms of the order k that contribute to the elastic
cross section in the limit of small collision energies and
depend on the interaction potential at short distances.
These additional terms were first brought to attention
in the works of Shakeshaft [16] and Ganas [17], who
extended the work of Hinckelmann and Spruch [18] to
attractive inverse-cube potentials. Their results, however,
depend on the characteristics of a truncated finite-range
potential, which is purely artificial (see discussion in
Ref. [18]).
In the present work, a general, analytical formula

[Eq. (7)] for the low-energy behavior of the scattering
phase shift in the presence of an attractive inverse-cube
tail potential is derived. The leading-order energy depen-
dence is adopted from the properties of quantum reflection
that account for the influence of the pure �1=r3 potential
and is explicitly related to the asymptotic form of the
regular solution at zero energy. This low-energy expansion
depends on only a single parameter, which can be identi-
fied with the threshold quantum number’s remainder

PRL 110, 260401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
28 JUNE 2013

0031-9007=13=110(26)=260401(5) 260401-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.260401


� 2 ½0; 1Þ accounting for the deviation of the full potential
from the pure singular �1=r3 form at short distances. A
connection to the position of a weakly bound state is
established and the contribution of higher partial waves
to the low-energy scattering cross section is investigated.

Derivation of the threshold law.—The dimensionless
Schrödinger equation for the radial wave function in the
potential �C3=r

3 is given by

�
� d2

d�2
þ lðlþ 1Þ

�2
� 1

�3
� E

E3

�
ulð�Þ ¼ 0 ; (2)

where all lengths are expressed in terms of the quantal
length scale �3 ¼ 2�C3=@

2, such that � ¼ r=�3. The
energy E ¼ @

2k2=ð2�Þ enters Eq. (2) in units of the char-
acteristic energy scale E3 ¼ @

2=ð2��2
3Þ associated with

the tail potential �C3=r
3.

While at finite energies the solutions of the radial
Schrödinger equation (2) cannot be represented in a simple
closed analytical form [19], the s-wave solutions at zero
energy (E ¼ 0) can simply be expressed in terms of Bessel
functions:

ffiffiffiffi
�

p
J1ð2= ffiffiffiffi

�
p Þ and ffiffiffiffi

�
p

Y1ð2= ffiffiffiffi
�

p Þ. In order to sup-

port an elastic scattering process, the full potential VðrÞ
deviates from the singular form of its inverse-cube tail at
small distances. Beyond the range of these deviations,
where VðrÞ � �C3=r

3, the regular zero-energy solution
u0ð�Þ in the full potential VðrÞ can be expressed as a
linear combination of the two solutions in the reference
potential �C3=r

3,

u0ð�Þ / ffiffiffiffi
�

p �
J1

�
2ffiffiffiffi
�

p
�
þ tanð��ÞY1

�
2ffiffiffiffi
�

p
��

: (3)

This linear combination is determined by the noninteger
remainder � 2 ½0; 1Þ of the threshold quantum
number, which is defined as nth ¼ nmax þ�. It is the
hypothetical quantum number at exactly E ¼ 0 and is a
property of the full potential VðrÞ. The integer nmax is the
quantum number of the least bound state and is related to
the total number of bound states N [number of nodes in
u0ð�Þ] via nmax ¼ N � 1.

Assuming that the full interaction potential VðrÞ is
known in all of coordinate space, the threshold quantum
number can be estimated via

nth � 1

�@

Z 1

rin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�VðrÞ

q
dr��inð0Þ

2�
��outð0Þ

2�
; (4)

where the semiclassical Bohr-Sommerfeld quantization
rule is corrected by including the appropriate reflection
phases (see, e.g., Refs. [20,21]). In the case of an inverse-
cube tail potential, the threshold value of the outer reflec-
tion phase is given by �outð0Þ ¼ 3�=2, whereas the inner
reflection phase depends on the peculiarities of the short-
range potential; for a potential with a singular repulsive
inner core, it is well approximated by �in � �=2.
Potentials that fall off faster than �1=r2 asymptotically

and are more singular than �1=r2 do, in general, support
the process of quantum reflection [22]. The complex
amplitude R for reflection is connected to the complex
Kmatrix of the quantum reflection process via the relation
K ¼ ið1þ RÞ=ð1� RÞ. Considering scattering by the full
potential VðrÞ that deviates from this singular attractive
form of its tail at short distances, the low-energy expansion
for the phase shift can very generally be given by

tan�0 ¼ ReðKÞ � ImðKÞ½cotð��Þ þOðk2Þ� ; (5)

using the results of Ref. [23]. For potentials that fall
off faster than �1=r3, this relation yields tan�0 ¼ �akþ
Oðk2Þ, with the scattering length given by a ¼ �aþ b=
tanð��Þ involving the mean scattering length �a and the
threshold length b [21] that depend solely on the singular
reference potential; see also Ref. [24]
For the quantum reflection process in a singular attrac-

tive potential �C3=r
3, the low-energy limit of the K

matrix is given by

K ¼ �
�
lnð2k�3Þ þ 3�� 3

2
� i�

�
ðk�3Þ

þ �

�
lnð2k�3Þ þ 3�� 19

12
� i�

�
ðk�3Þ2 þOðk3Þ ;

(6)

where � ¼ 0:577 215 66 . . . is Euler’s constant. In order to
obtain Eq. (6), the corresponding formula from Ref. [25]
was extended to second order in the wave number k using
the result of Willner and Gianturco [26]. With the K
matrix (6), relation (5) yields the main result of this Letter,

tan�0 ¼ �
�
lnðk�3Þ þ �

tanð��Þ þ 3�þ ln2� 3

2

�
ðk�3Þ þ �

�
lnðk�3Þ þ �

tanð��Þ þ 3�þ ln2� 19

12

�
ðk�3Þ2 þOðk3Þ ;

(7)

which is the threshold law for elastic s-wave scattering by
potentials with attractive inverse-cube tails and contains all
terms up to and includingOðk2Þ. These terms depend (apart
from �3) only on the value of the threshold quantum

number’s remainder � which determines the asymptotic
form of the regular solution (3). As for potentials that fall
off faster than �1=r3, the phase shift tends to zero in the
limit of k ! 0; however, a finite value cannot be assigned
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to the scattering length due to the divergence of the loga-
rithmic term [cf. Eq. (1)].

The result for the special case treated in Refs. [16,17] is
retrieved from Eq. (7) by matching the asymptotic form (3)
of the regular solution to (1� r=asr) at the cutoff distance
d and keeping only the lowest-order terms in �3. The
present result (7) is, by construction, also compatible
with the result of Ref. [26].

Figure 1 shows a plot of the quantity � tan�0=k against
the wave number k in units of 1=�3. This quantity is
sometimes referred to as the energy dependent ‘‘effective
scattering length’’ aeffðkÞ [27]. It mediates the effective
interactions at all collision energies. The solid lines show
the exact behavior of � tan�0=k for five different values
of the threshold quantum number’s remainder �¼
f0:05;0:25;0:5;0:75;0:95g. These results are obtained from
numerically solving the Schrödinger equation (2) with the
energy-insensitive inner boundary conditions implied by
Eq. (3) and matching to sinðkrÞþtan�0cosðkrÞ at large
distances, where the influence of the potential is negligible.
The dashed lines in Fig. 1 depict the results obtained from
Eq. (7), which—with the given value of the remainder—
reproduce the exact results in the low-energy limit. The
dot-dashed line shows the crude approximation (1) that
contains only the logarithmic term and neglects further
terms of OðkÞ.

Presence of a weakly bound state.—For potentials
that fall off faster than �1=r3, the magnitude of a large
positive scattering length a > 0 can be related to the posi-
tion of a weakly bound state at Eb ¼ �@

2�2
b=ð2�Þ via

the relation a ¼ ��1
b þOð�0

bÞ. A formula that connects

the threshold law (7) to the position of a weakly

bound state can also be derived in the case of an interac-
tion potential VðrÞ that behaves as �C3=r

3 at large
distances and thus cannot be assigned a finite value for
the scattering length.
The highest bound state at the energy Eb ¼ Enmax

in the

potential well is connected to the threshold quantum num-
ber’s remainder � via the quantization function [20]

� ¼ FðEbÞ ¼ �b�3 þOð�2
bÞ : (8)

When the energy Eb is very close to the dissociation
threshold, the quantization function FðEbÞ reaches its uni-
versal low-�b limit, where it is solely determined by the
inverse-cube tail potential. The threshold law (7) can then
be related to the bound state energy Eb by inserting the
right-hand side of Eq. (8),

� tan�0

k
¼ �3 lnðk�3Þ þ 1

�b

þOðk1; �0
bÞ ; (9)

where all constant terms have been omitted due to the
occurrence of an additional unknown term Oð�0

bÞ.
Higher angular momenta.—In an actual three-

dimensional system, higher partial waves need to be taken
into account, in order to obtain dependable results for the
cross sections.
While in the limit of low energies the elastic cross

section is—for potentials that fall off faster than
�1=r3—dominated by the s-wave contribution and
assumes its threshold value 	� 4�a2, the elastic cross
section diverges at low energies in the presence of a�1=r3

potential tail. In contrast to potentials that fall off faster,
partial waves with nonzero angular momentum affect the
cross section for elastic collisions by potentials with attrac-
tive inverse-cube tails even in the low-energy limit. The
leading-order term of the phase shift in higher partial
waves l � 1 is given by

tan�l�1 ¼ 1

2lðlþ 1Þ ðk�3Þ þOðk2Þ ; (10)

as can be obtained from the Born approximation [16].
It contains no information about the short-range part of
the interaction potential.
The total cross section is given by the sum over all

partial cross sections 	l ¼ 4�ð2lþ 1Þsin2�l=k
2. In order

to determine the low-energy behavior of the total cross
section for elastic collisions to lowest order in the wave
number k, all terms of order k need to be accounted
for, especially in the expansion of tan�0 [see Eq. (7)].
The s-wave contribution 	l¼0 to the total cross section is
given by

	l¼0 ¼ 4��2
3

�
lnð2k�3Þ þ �

tanð��Þ þ 3�� 3

2

�
2 þOðkÞ ;

(11)

which is divergent in the limit of low collision energies.
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FIG. 1 (color online). The s-wave scattering phase shift for
different values of the threshold quantum number’s remainder
� ¼ f0:05; 0:25; 0:5; 0:75; 0:95g (from top to bottom in the limit
of low energies). The solid lines show the exact values of
� tan�0=k as a function of the dimensionless product k�3.
The corresponding results from Eq. (7) are given as dashed
lines. They give the correct low-energy behavior. The simple
leading-order expansion (1) is depicted by the dot-dashed line.
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Since the contributions of partial waves with l � 1 to the
low-energy limit of the total cross section are universal in
the sense that they do not depend on the peculiarities of
the potential at short distances [cf. Eq. (10)], they can be
summed up in a straightforward way. This yields

	tot ¼ 	l¼0 þ
X1
l¼1

	l ¼ 	l¼0 þ ��2
3 þOðkÞ (12)

for the total cross section. The partial cross sections do not
depend on the actual sign of tan�l; in the low-energy limit,
the total contribution from partial waves with l � 1 is thus
the same as for a repulsive 1=r3 potential (cf. Ref. [10]).

The three panels of Fig. 2 show total elastic cross
sections in the presence of a �C3=r

3 potential tail for
different values of the threshold quantum number’s
remainder � ¼ f0:1; 0:5; 0:9g. In each panel, the solid
black line gives the exact results for the total cross section
	tot as obtained from numerically solving the Schrödinger
equation (2); its s-wave contribution, corresponding to the
results presented in Fig. 1, is shown as the gray line. In the
case of � ¼ 0:5, shape resonances of considerable width
are visible at E� 102E3. On the high-energy side of the

range plotted in Fig. 2, the total elastic cross section is

essentially given by the semiclassical estimate 	tot �
3��2

3

ffiffiffiffiffiffiffiffiffiffiffi
E3=E

p
(see, e.g., Refs. [28,29]). The dashed lines

show the results of Eq. (12) with the s-wave contribution
from Eq. (11) for the respective value of the remainder �.
They perfectly reproduce the exact results in the low-
energy limit. Taking Eq. (12) with only the s-wave con-
tribution as obtained with Eq. (1) yields the dot-dashed
lines, which are only poor approximations to the respective
exact cross sections. The upper panel shows a minimum
in the cross section at around E� 10�9E3, which is
reminiscent of the Ramsauer-Townsend effect (see, e.g.,
Ref. [13]). However, the total cross section does not
drop below ��2

3, which is the threshold contribution of

the partial waves with nonvanishing angular momentum
[cf. Eq. (12)]. The exact results presented in Fig. 2 are
universal for scattering by a potential with a�1=r3 tail and
the respective values of the threshold quantum number’s
remainder �.
Conclusions.—We have derived an explicit form of the

threshold law (7) for attractive inverse-cube interactions,
which is the main result of this Letter and is not given in the
existing literature up to the present day. While a finite value
of the scattering length does not exist in the presence of an
inverse-cube tail potential, the threshold quantum num-
ber’s remainder � offers a convenient parametrization of
the asymptotic form of the regular solution (3) and intro-
duces effects due to the short-range part of the potential
into the threshold law (7). A further new result is the
connection of the threshold law to the binding energy of
a weakly bound state as established via Eq. (9).
While the results presented are obtained for elastic

collisions involving only one channel, they can be
extended to elastic scattering in the presence of channel
coupling; Feshbach resonances are included according to
the scheme presented in Ref. [30].
Despite the obvious theoretical interest in the knowledge

of a threshold law for attractive inverse-cube interactions,
the question remains whether it is or will be applicable in
realistic situations. The systemof aligned dipolarmolecules
confined to one dimension is a promising candidate for
studying dipolar interactions at ultracold temperatures.
The two-body interaction potentials for different configu-
rations of this system have recently been calculated [31].
For typical values of the coefficient C3, in a system of
aligned KRb (LiNa) molecules, the accuracy of the thresh-
old law (7) could be tested at temperatures in the nanokelvin
(microkelvin) regime. This is indeed ultracold, but does not
go beyond the scope of today’s experiments. Theoretical
studies of the corresponding many-body system, such as
Ref. [32], could benefit from using Eq. (7) for themediation
of effective interactions at low collision energies.
The author is grateful to Harald Friedrich for helpful

discussions and acknowledges support from the Deutsche
Forschungsgemeinschaft (FR 591/17-1).
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FIG. 2 (color online). Total cross sections for elastic scattering
(solid black lines) are plotted against the collision energy for
different values of the threshold quantum number’s remainder
� ¼ f0:1; 0:5; 0:9g. The corresponding s-wave contributions are
shown as solid gray lines. The low-energy limit of the exact cross
section is perfectly reproduced by the prediction via the correct
threshold law (7), which is shown as the dashed line. The
prediction via the simple form (1) (dotted line) is only a crude
approximation to the exact cross section.
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