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We study the time taken by a language learner to correctly identify the meaning of all words in a lexicon
under conditions where many plausible meanings can be inferred whenever a word is uttered. We show
that the most basic form of cross-situational learning—whereby information from multiple episodes is
combined to eliminate incorrect meanings—can perform badly when words are learned independently and
meanings are drawn from a nonuniform distribution. If learners further assume that no two words share a
common meaning, we find a phase transition between a maximally efficient learning regime, where the
learning time is reduced to the shortest it can possibly be, and a partially efficient regime where incorrect
candidate meanings for words persist at late times. We obtain exact results for the word-learning process
through an equivalence to a statistical mechanical problem of enumerating loops in the space of word-
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On average, children learn ten words a day, thereby
amassing a lexicon of 60 000 words by adulthood [1].
This speed of learning is remarkable given that every
time a speaker says a word, a hearer cannot be certain of
its intended meaning [2]. Our aim is to identify which of
the many proposed mechanisms for eliminating uncer-
tainty can actually deliver such rapid word learning. In
this Letter, we pursue this aim within the long tradition of
applying quantitative methods from statistical mechanics
to problems in learning [3-6] and communication [7-9].

Empirical research suggests that two basic types of
learning mechanisms are involved in word learning. First,
a learner can apply various heuristics—e.g., attention to
gaze direction [10] or prior experience of language struc-
ture [11]—at the moment a word is produced to hypothe-
size a set of plausible meanings. However, these heuristics
may leave some residual uncertainty as to a word’s
intended meaning in a single instance of use. If the heu-
ristics are weak, the set of candidate meanings could be
very large. This residual uncertainty can be eliminated
by comparing separate instances of a word’s use: if only
one meaning is plausible across all such instances, it is a
very strong candidate for the word’s intended meaning.
This second mechanism is referred to as cross-situational
learning [12,13]. Formally, it can be couched as a process
whereby associations between words and meanings are
strengthened when they co-occur [13-16], as in neural
network models for learning [3-6,17]. It can also be
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viewed as an error-correction process [7-9] where a target
set of associations is reconstructed from noisy data.

There is little consensus as to which word-learning
mechanisms are most important in a real-world setting
[18—22]. In part this is because word-learning experiments
(e.g., Refs. [20,23,24]) are necessarily confined to small
lexicons. A major question is whether strategies observed
in experiments allow realistically large lexicons to be
learned rapidly: this can be fruitfully addressed through
stochastic dynamical models of word learning [15,25-27].
In these models, a key control parameter is the context size:
the number of plausible, but unintended, meanings that
typically accompany a single word’s true meaning. Even
when contexts are large, the rapid rate of learning seen in
children is reproduced in models where words are learned
independently by cross-situational learning [15,25-27].
This suggests that powerful heuristics capable of filtering
out large numbers of spurious meanings are not required.
However, a recent simulation study [28] shows that this
conclusion relies on the assumption that these unintended
meanings are uniformly distributed. In the more realistic
scenario where different meanings are inferred with differ-
ent probabilities, word-learning rates can decrease dra-
matically as context sizes increase. Powerful heuristics
may be necessary after all.

One heuristic of great interest to empiricists (e.g.,
Refs. [29-32]) and modelers (e.g., Refs. [15,26-28,33])
is a mutual exclusivity constraint [29]. Here, a learner
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assumes that no two words may have the same meaning.
This generates nontrivial interactions between words
which makes analysis of the corresponding models diffi-
cult. For example, if one begins with a master equation, as
in Refs. [15,25,26], the expressions become unwieldy to
write down, let alone solve. Here, we adopt a fundamen-
tally different approach which entails identifying the
criteria that must be satisfied for a lexicon to be learned.
This allows the existing results for the simple case of
independently learned words and uniform meaning
distributions [26] to be generalized to arbitrary meaning
distributions and exactly solves the interacting problem to
boot. Our main result is that mutual exclusivity induces a
dynamical phase transition at a critical context size, below
which the lexicon is learned at the fastest possible rate
(i.e., the time needed to encounter each word once). As far
as we are aware, the ability of a single heuristic to deliver
such fast learning has not been anticipated in earlier work.

We begin by defining our model for lexicon learning.
The lexicon comprises W words, and each word i is uttered
as a Poisson process with rate ¢;. In all cases, we take
words to be produced according to the Zipf distribution
¢; = 1/(wi) that applies for the ~10* most frequent
words in English [34-36]. Here, u = Y/ (1/i) so that
one word appears on average per unit time. Each time a
word i is presented, the intended target meaning is assumed
always to be inferred by the learner by applying some
heuristics. At the same time, a set of nontarget confounding
meanings called the context is also inferred.

In the purest version of cross-situational learning
[13,26], a learner assumes that all meanings that have
appeared every time a word has been uttered are plausible
candidate meanings for that word. The word becomes
learned when the target is the only meaning to have
appeared in each episode. In the noninteracting case,
each word is learned independently—see Fig. 1(a). In the
interacting case, mutual exclusivity acts to further exclude
the meanings of learned words as candidates for other

(a) Noninteracting (b) Interacting
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FIG. 1. Acquisition of a three-word lexicon. Solid shapes are

meanings that have appeared in every episode alongside a word;
open shapes are therefore excluded as candidate meanings. (a) In
the noninteracting case, only the meaning of the word ‘“‘square”
is learned. (b) In the interacting case, mutual exclusivity further
removes meanings (shown hatched) of learned words, both
prospectively and retrospectively (shown by arrows). All three
words are learned in this example.

words. We take this exclusion to occur at the instant a
word is learned, which means a single learning event may
trigger an avalanche of other learning events by repeated
application of mutual exclusivity. An example of this non-
trivial effect that is hard to handle within standard
approaches [15,26] is shown in Fig. 1(b). Here, learning
“square” causes ‘‘circle” to be learned at the same time.

We consider the noninteracting case first both to intro-
duce our more powerful analytical approach and to pin-
point the origin of the catastrophic increase in learning
times noted in Ref. [28]. Two conditions must be satisfied
for the lexicon to be learned by a given time: (C1) all words
must have been exposed at least once, and (C2) no con-
founding meaning may have appeared in every episode that
any given word was uttered. To express these conditions
mathematically, we introduce two stochastic indicator var-
iables. We take E;(f) = 1 if word i has been uttered before
time 7, and zero otherwise, and A; ;(t) = 1 if confounding
meaning j has appeared in every context alongside word i
up to time ¢ (or if word i has never been presented), and
zero otherwise. Conditions (C1) and (C2) then imply that
the probability that the lexicon has been learned by time ¢ is

L= (1:[E,~<r>1‘[[1 =g 00) = ([T - 4,00). @

JFi i#j

where the angle brackets denote an average over all
sequences of episodes that may occur up to time t¢.
The second equality holds because A; ;(t) = 1Vj # i if
E;(r) = 0.

This expression is valid for any distribution over con-
texts. For brevity, we consider a single, highly illustrative
construction that we call resampled Zipf (RZ). It is based
on the idea that meaning frequencies should follow a
similar distribution to word forms [28]. It works by asso-
ciating an ordered set M; of M confounding meanings
with each word i. The kth meaning in each set has an
a priori statistical weight 1/k. Whenever word i appears,
meanings are repeatedly sampled from M,; with their
a priori weights and added to the context if they are not
already present until a context of C distinct meanings has
been constructed. When words are learned independently,
the learning time depends only on M, W, and C, and not on
which meanings are present in any given set M, [26].

We seek the time * at which the lexicon is learned with
some high probability 1 — €. In the RZ model, each con-
text is an independent sample from a fixed distribution.
Hence, the correlation functions (4; ; A;, ;, ...) in Eq. (1)
all decay exponentially in time. To find 7* to good accuracy
in the small-e limit, only the slowest decay mode for
each word i is needed. Higher-order correlation functions
depend on many meanings co-occurring and decay more
rapidly than lower-order correlation functions. Thus, at late
times, Eq. (1) is well approximated by (see Ref. [37])
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where aj is the fraction of episodes in which word i’s most
frequent confounder appears alongside the target. This
expression generalizes results for independently learned
words [15,25,26] from uniform to arbitrary nonuniform
confounder distributions.

The RZ model has the further simplification that a
has a common value a* for all words i. Then, it is known
from previous calculations [26] for Zipf-distributed word
frequencies that the learning time is

1@; WO(— 1n(v1V— e))’ ®)

o~

where "W (z) is the principal branch of the Lambert W
function [38]. For large argument, this function behaves as
a logarithm.

In Fig. 2, we compare the analytical result [Eq. (3)] with
learning times obtained from direct Monte Carlo simula-
tions conducted as detailed in Ref. [26]. The only compli-
cation is that we unfortunately have no analytic expression
for a* arising from the RZ procedure. We therefore obtain
the frequency of the most common confounder for given C
and M from independent Monte Carlo samples. The agree-
ment between Eq. (3) and simulation is very good.

Figure 2 also shows that the learning time increases
superexponentially with the context size. We have found
that the probability the kth most confounder appears in
a context of size C fits the form p, = 1 — (1 — w,)¢"
where wy is the a priori probability and A is a fitting
parameter that depends on M and k. As noted by Vogt
[28], the repeated sampling without replacement implies
that p; = 1 — (1 — wy)€. Our analysis further reveals that
the learning time is entirely determined by the frequency of
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FIG. 2 (color online). Time to learn a lexicon of W words
independently to a residual probability € = 0.01 with C of M
confounders present in each episode. Points: data from Monte
Carlo simulations (over 10 000 sampled lexicons in each case).
Lines: the analytical result, Eq. (3).

the most common confounder a* through Eq. (3). We note
that this is true even when other confounders have compa-
rable appearance frequencies (C = 5).

We now turn to the case where the mutual exclusivity
constraint serves to exclude the meanings of learned words
as possible meanings for other words. In this case, it is
important to distinguish between labeled and unlabeled
meanings: an unlabeled meaning is not the target meaning
of any word in the lexicon and hence cannot be excluded
using the mutual exclusivity constraint. To generalize
Eq. (1) to this problem, we must identify the conditions
for the lexicon to be learned. Condition (C1) still applies:
each word must be uttered at least once for a learner to be
able to learn it. Condition (C2) now applies only to unla-
beled confounding meanings: these can only be excluded if
they fail to appear in a context, as before. When these two
conditions are satisfied, there is a third—necessary and
sufficient—condition for the lexicon to be learned that
takes into account all the interactions and avalanches gen-
erated by the mutual exclusivity constraint. This is condi-
tion (C3): no candidate loops exist at time ¢. A candidate
loop, € = (iy, iy, ..., 0,) is a subset of distinct, labeled
meanings whereby each meaning i; has appeared along-
side the word associated with meaning i;_; (or i, if k = 1)
every time it has been uttered. Inspection of Fig. 1(b)
shows that the one candidate loop (filled square, filled
circle) that exists after the third episode is destroyed in
the fourth. Then, in the fifth episode, the final word
appears, and since no unlabeled meaning is a candidate
for any word, the entire three-word lexicon is learned.

To see why condition (C3) is necessary and sufficient in
general when (C1) and (C2) hold, we first show that a
candidate loop must exist if the lexicon has not been
learned. Suppose word i; has not been learned. Then, at
least one meaning, i,, must confound word i;. Word i,
must also not have been learned, otherwise meaning i,
would not confound word i;. Hence, word i, must be
confounded by a meaning i3, and so on. As there is a finite
set of words, this sequence of meanings must eventually
form a loop.

We now show the lexicon cannot have been learned if a
candidate loop exists by first assuming that it has been
learned under these conditions. Then, if word i; was
learned at time ¢, word i, must have been learned before
time ¢ for mutual exclusivity to act (even if words i; and i,
are learned as part of the same avalanche). Iterating this
argument around the loop, one finds that word i; can only
have become learned at time ¢ if it had already been learned
at some earlier time. This contradiction therefore implies
that the absence of candidate loops and a learned lexicon
are equivalent.

We again use indicator variables to translate conditions
(C1)—(C3) into an exact expression for the learning proba-
bility. Introducing C,(r) = A; ;, (A, ;,(t) - - - A; ; (¢) that
equals 1 if the loop € persists at time #, we have
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again valid for any distribution of confounding meanings.
Here, meanings 1 to W correspond to words 1 to M, and
so meanings with an index j> W are unlabeled. The
product over ¢ is over all possible candidate loops. This
expression has the remarkable property that it is expressed
concisely in terms of the word and confounder appearance
frequencies alone: the avalanche dynamics triggered by
mutual exclusivity do not enter explicitly. This property,
reminiscent of the avalanche dynamics of Abelian sandpile
models [39], reduces analysis of the learning probability
to the statistical mechanical problem of enumerating
candidate loops.

In the interacting problem, the structure of each candi-
date set M; is important, as this determines which words
interact. We consider a model which has no unlabeled
meanings and where each set M, is a sample of M non-
target meanings obtained via the RZ prescription. Then, in
each episode, C meanings are drawn from the relevant
candidate set using RZ again, but with an a priori weight
1/k where k is the rank of a meaning within the set M;
when ordered by the frequency of the corresponding
words. Thus, meanings of high-frequency words are
high-frequency confounders. Learning times from
Monte Carlo simulations are shown in Fig. 3.

We observe two distinct learning-time regimes. At small
C, the learning time is constant, and close to the time it
takes for all words in the lexicon to appear at least once.
[This time is given by Eq. (3) with a* = 0.] In this regime,
learning is as fast as it can possibly be: mutual exclusivity
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FIG. 3 (color online). As Fig. 2 but with the mutual exclu-
sivity constraint. Points: data from Monte Carlo simulations
(100 000 lexicons for C = 20, at least 2500 lexicons for larger
C). Dotted lines: time for the entire lexicon to have been exposed
with residual probability € = 0.01. Dashed lines: time for the
slowest decaying candidate loop to remain with probability e.
Solid line: time to learn lexicon independently, Eq. (3), for
comparison.

is maximally efficient and reverses the undesirable
increase in learning times that arises from nonuniform
confounder distributions. Above a critical context size,
the learning time rises but remains much smaller than
when words are learned independently: mutual exclusivity
is partially efficient in this regime.

Our exact result [Eq. (4)] can be used to explain these
observations [40]. For the RZ model as described above, it
turns out that only one confounder loop ¢ = (1, 2) is rele-
vant at late times. Consequently, the learning probability
L(r) is asymptotically given as the product of two factors.
The first gives the probability that all words have been
encountered by time ¢ and approaches unity exponentially
with rate 1/uW. The second is the probability that the loop
€ = (1,2) has not decayed away: this approaches unity
with rate 3(1 — a*)/2u. The appearance frequency of the
most frequent confounder a* increases with context size.
When a* < 1 — (2/3W), the slowest relaxational mode of
the learning probability is associated with each word being
uttered at least once, whereas for larger values, the slowest
mode comes from eliminating the confounder loop. In this
latter partially efficient regime, the lexicon learning time
is predicted as * = —(2u Ine/3(1 — a*) for small e, in
very good agreement with simulation data (see Fig. 3). We
describe the sudden change in the dominant relaxational
behavior—a phenomenon seen also in driven diffusive
systems [41]—as a dynamical phase transition. It is
broadly reminiscent of transitions exhibited by combina-
torial optimization problems, whereby the number of unsa-
tisfied constraints increases from zero above a critical
difficulty threshold [42]. In the present case, the learning
problem remains solvable in both regimes, but there is a
transition from a regime where it is solved in constant time
to one where the time grows superexponentially in the
difficulty of the problem (here, the context size).

To summarize, we have found that mutual exclusivity is
an extremely powerful word-learning heuristic. It can yield
lexicon learning times in the presence of uncertainty that
coincide with the time taken for each word to be heard at
least once. Empirical data (summarized in Ref. [26]) sug-
gest that this is easily fast enough for realistic lexicons of
W = 60000 words to be learned. To enter the partially
efficient regime, each word’s most frequent confounder
would need to be present in at least 99.99% of all episodes:
even then, learning is over W times faster than when
mutual exclusivity is not applied. The dynamical transition
between a maximally and partially efficient regime also
appears to be present in a variety of word-learning models
we have investigated, e.g., those in which confounder
frequencies are uncorrelated with their corresponding
word frequencies or using less memory-intensive learning
strategies [43]. We also expect the transition to be evident
in models where the target meaning does not always
appear, at least in the regime where learning is possible
[15,27]. We believe the analytical methods introduced in
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this Letter should allow more detailed quantities to be
calculated, e.g., the distribution of learning times for a
given word, which would shed light on such phenomena
as the childhood vocabulary explosion at around 18 months
[44]. Similar thinking may also allow analysis of other
nonequilibrium dynamical systems whose master equa-
tions are hard to solve directly. Finally, our results suggest
new empirical questions, such as whether high-frequency
confounders correlate with high-frequency words, and the
extent to which learners are able to apply the mutual-
exclusivity constraint retroactively. We therefore contend
that statistical physicists can contribute much to the under-
standing of how children learn the meaning of words.

We thank Mike Cates and Cait MacPhee for comments
on the manuscript.
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