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We present a theoretical study of an electronic quantum refrigerator based on four quantum dots
arranged in a square configuration, in contact with as many thermal reservoirs. We show that the system
implements the minimal mechanism for acting as a self-contained quantum refrigerator, by demonstrating
heat extraction from the coldest reservoir and the cooling of the nearby quantum dot.
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The increasing interest in quantum thermal machines
has its roots in the need to understand the relations bet-
ween thermodynamics and quantum mechanics [1,2]. The
progress in this field may as well have important applica-
tions in the control of heat transport in nanodevices [3]. Ina
series of recent works [4-6], the fundamental limits to the
dimensions of a quantum refrigerator have been found.
It has been further demonstrated that these machines could
still attain Carnot efficiency [5], thus launching the call for
the implementation of the smallest possible quantum re-
frigerator. References [4—6] considered self-contained ther-
mal machines defined as those that perform a cycle without
the supply of external work, their action being grounded
on the steady-state heat transfer from thermal reservoirs
at different temperatures. The major difficulty in the real-
ization [7,8] of self-contained refrigerators (SCRs) is the
engineering of the crucial three-body interaction enabling
the coherent transition between a doubly excited state in
contact with a hot (H) and cold (C) reservoir, and a singly
excited state coupled to an intermediate (or ‘“room,” R)
temperature bath. We get around this problem by proposing
an experimentally feasible implementation of a minimal
SCR with semiconducting quantum dots (QDs) operating in
the Coulomb blockade regime. We are thus able to estab-
lish a connection between the general theory of quantum
machines and the heat transport in nanoelectronics [3].

QDs contacted by leads were proposed as ideal systems
for achieving high thermopower [9—11] or anomalous ther-
mal effects [12]. Here, we study a four-QD planar array
(hereafter named a ‘“‘quadridot” for simplicity) coupled
to independent electron reservoirs as shown in Fig. 1;
with proper (but realistic) tuning of the parameters, we
will show that the quadridot acts as a SCR, which pumps
energy from the high temperature reservoir H and the low
temperature reservoir C fo the intermediate temperature
reservoirs R; and R,. Furthermore, we will analyze the
conditions under which the quadridot is able to cool the
dot QD, which is directly connected to the bath C at an
effective temperature that is lower than the one it would
have had in the absence of the other reservoirs. This will
lead us to introduce an operative definition of the local
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effective temperature, depending on the measurement
setup, and to predict the existence of working regimes
where, for instance, the refrigeration is not accompanied
by the cooling of QD,. We start analyzing the system
Hamiltonian, identifying the conditions that allow us to
mimic the behavior of the SCR of Ref. [4].

In the absence of the coupling to the leads, the quadridot
shown in Fig. 1 is described by the Hamitonian

U

Hop = Z €n; + Z 2” nin; — tcte, + cley +He),
i=1,...,4 i*j

where for i =1,...,4, c;r, c;, and n; = c?ci represent

respectively the creation, annihilation, and number opera-
tors associated with the ith QD. In this expression, the
quantities €; gauge the single-particle energy levels, ¢
defines the tunneling coupling between the dots, and U;;
describes the finite-range contribution of the Coulomb
repulsion. To reduce the maximum occupancy in each
QD to one electron, we will assume the on-site repulsion
terms U;; to be the largest energy scale in the problem.
Furthermore, in order to mimic the dynamics of Ref. [4],
we will take U, = Uy = U, and Uy = Uy = U,
both much larger than the “diagonal” terms U,y = Uz =
U, and tune the single-electron energy level of the

Z
Tr <
7

N U SNFe
2L
Al — .
4 \
7§ QDy \
1 \

reservoir er reservoir C

reservoir H reservoir Ro

FIG. 1 (color online). The quadridot. The four quantum dots
QDy, QD,, QDj3, and QD, are weakly coupled to the reservoirs
R, C, R,, and H, respectively, which are all grounded and
maintained at temperatures Ty > (T, = Tg, = Tg) > T¢.
Tunneling is allowed only between QD; and QD,, and between
QD, and QDj; (f being the gauging parameter).
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upper-right dot (which will be coupled to the cool
reservoir C) so that €, = €; + €3 — €4. These choices
ensure that in the absence of tunneling (r = 0), the
“diagonal” two-particle states |d) = |1,0, 1,0) and |d) =
|0, 1,0, 1) shown in Fig. 2 are degenerate (the charge
states are labeled according to the occupation of the four
dots |ny, n,, n3, n4)). These are the only states of the two-
electron sector which play an active role in the system
evolution, mimicking the role of the vectors |01) and |10)
of Ref. [4]. Because of the presence of U or U, the other
configurations are indeed much higher in energy to get
permanently excited in the process. Still, the states |u) =
[1,1,0,0) and |I) = |0,0, 1, 1) play a fundamental role in
the SCR as their presence generates (via a Schrieffer-Wolff
transformation [13,14] and the nonzero hoppings #) an
effective coupling term between |d) and |d) of the form
Hege = g4a(ld)dl + |d)d]) with

2t2(Ud — UJ_)
Py <1 1)
WUy —UL? — (&4 — €)?

In our model, g,; is analogous to the perturbative parame-
ter g of Ref. [4]. Its role is to open a devoted channel which
favors energy exchanges between the couple H-C and the
couple R;-R, by allowing two electrons to pass from the
first to the second through the mediation of the quadridot
states |d) (which is in contact with H and C) and |d) (which
is connected to Ry and R,). For proper temperature imbal-
ances, this is sufficient to establish a positive heat flux from
C to QD, even if T is the lowest of all bath temperatures.
The mechanisms can be heuristically explained as follows:
if Ty is sufficiently higher than the other bath tempera-
tures, then the dot which has more chances of getting
populated by its local reservoir is QD,. When this happens,
the large values of U and U will prevent QD; and QD5
from acquiring electrons, too. On the contrary, while QD,
is populated, QD, is allowed to accept an electron from
its reservoir C (U, being much smaller than U, and U)),
creating |d). The coupling provided by H,g will then rotate
the latter to |d), giving the two electrons (the one from H
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FIG. 2 (color online). Pictorial view of the low-energy elec-
tronic charged states (a black circle indicates occupation by an
electron). Because of the hoppings terms ¢ and g,;, the eigen-
states of the low-energy Hamiltonian are bonding-antibonding
states |d) * |d) and the four bonding-antibonding delocalized
single-particle states (the completely empty state is not shown).
For ¢ = 0, the two electron states |d) and |d) are resonant, while
|u) and |I) are the high-energy virtual states responsible for the
effective interaction g, coupling |d) and |d).

and the one from C) a chance of being absorbed by R{-R,.
The opposite process (creation of |d) by absorption of a
couple of electrons from R;-R,, rotation to |d), and final
emission toward H-C) is statistically suppressed due to
the (relatively) low probability that QD; or QD5 will get
an electron from their reservoir before QD, gets its
own from H: the net result is a positive energy flux from
H-Cto R 1 -Rz.

To verify this picture, we explicitly solve the open
dynamics of the quadridot and study its asymptotic behav-
ior. Specifically, we model our four local baths H, C, Ry,
and R, as independent electron reservoirs (leads) charac-
terized by their own chemical potential w; and their own
temperature [both quantities entering in the Fermi-Dirac
occupation functions f;(€) associated with the reservoir].
For the sake of the simplest correspondence with the model
of Ref. [4], in this study, all u; will be set to be identical
and fixed to a value that will be used as reference for the
single-particle energies of the system (e.g., setting €; = 0
in the Hamiltonian corresponds to have the ith quadridot
level at resonance with the Fermi energy of the reservoirs).
Furthermore, as detailed in the caption of Fig. 1, the
temperatures will be chosen to satisfy the relation 7T, <
Tk, = Tg, < Ty [15]. Within these assumptions, the only
required external action is exerted in maintaining the local
equilibrium temperatures and chemical potential, in accor-
dance to the standard definition of self-containment. The
quadridot-bath couplings (parametrized by the amplitudes

Fﬁ-k) ) are hence expressed as tunneling terms of the form

HT=;Z

> r¥cla;, +He, )
i=1,...4 k

with a;; being an annihilation operator which destroys an
electron of momentum £ in the lead i. In the Born-Markov-
Secular limit [16,17], these extra terms give rise to a
Lindblad equation for the reduced density matrix p of
the quadridot. The presence of ¢ plus the rotation into the
low-energy sector eliminates degeneracies among all pos-
sible energy transitions between the eigenstates of the
quadridot. The evolution of p is then determined by

p =2 Dilp] 3)

where for each reservoir D; represents an associated
Lindblad dissipator. This equation can be solved in the
steady-state regime (p = 0) yielding the asymptotic con-
figuration p*, from which the heat currents (J ;) flowing
through the ith reservoir are then computed as [16]

Jo.i) = Te(H op Di[ p=)). 4

If our implementation of the SCR is correct, we should
see a direct heat flow from the hot H and cold C reservoirs
to the reservoirs R; and R,, while the dot QD, should reach
an occupation probability corresponding to an effective
temperature which is lower than the one dictated by its
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local reservoir C [see Fig. 3(b)]. We have verified this by
setting the system parameters to be consistent with those
presented in Ref. [4]—making sure, however, that for such
a choice no additional degeneracies are introduced into the
system due to the larger dimension of our physical model.
While the performances of the device do not change quali-
tatively when varying the parameters according to the
above prescriptions, in the following we focus on a specific
scenario where we fixed €; = 2.1, 3 = 2.9, €, = 4.0, and
U, = 12.0 (U instead is taken to be infinitely large for
simplicity as its effect could be absorbed in the energy
level renormalization after the Schrieffer-Wolff transfor-
mation). The value of g,; is finally taken to be —0.001,
determining ¢ ( <0.1) through Eq. (1), while the couplings
terms I‘E.k) which link the quadridot to the reservoirs via
Eq. (2) are chosen to provide effective dissipation rates of
order ~0.0001 [18,19]. Solving numerically the steady-
state equation (3), we observe that for each T < T, there
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FIG. 3 (color online). (a) The panels refer to U,; = 0 (left),
U,; =1 (center), and U; = 2 (right). When Ty approaches the
black curve, i.e., at values very close to the analytical value of
Eq. (5) (dashed line), a change of sign in the heat flow occurs.
For Ty above the threshold (blue region), the machine works as
pictured in (b), extracting heat from the C and H reservoirs and
pumping it into R. In the opposite regime (under the threshold,
red region), heat cannot be extracted from C. The dashed black
line above the gray region indicates Ty = T = 2. The back-
ground color intensity is proportional to the actual heat pumped
to (extracted from) C. (c) Comparison between heat extraction
and single-particle occupation for U, = 2. In regions I and I,
the SCR is working (heat is extracted from C), while in regions
IIT and IV, the C bath receives heat. In regions I and III, we have
an effective decrease of the occupation number of QD, (i.e.,
(n,) <(nd)). (d) Efficiency of the SCR compared to the Carnot
efficiency (dashed black line) for 7. = 1.0. The curves repre-
sent, respectively from top to bottom,U; = 0 (blue), U,=1
(magenta), and U, = 2 (brown). The dashed horizontal line
indicates the maximum limit of efficiency for the quadridot
computed (for U; = 0) as in Ref. [4].

exists a minimal threshold value for 7p above which
the SCR indeed extracts heat from the cold reservoir C.
This is shown in Fig. 3(a) for T = 2 and different values
of U,; the quadridot works as a SCR in the region above
the threshold. Consistently with the second principle of
thermodynamics, the threshold value of Ty (black curve
in the plot) is always greater than Ty = 2 (for Ty below
Ty, the machine cannot produce work from H to pump heat
from C), and the region above this threshold gets larger as
U, gets smaller. The existence of a threshold for Ty also
implies that for given Ty > Ty, there is a minimal tem-
perature 7. for the cold reservoir under which the SCR
cannot work. Interestingly, for Ty /Tx — 00, the value of
T¢{ appears to asymptotically converge toward a finite
nonzero temperature which depends upon the engine
microscopic parameters and which can be interpreted as
the emergent absolute zero of the model. An approximate
analytical expression for T can be derived exploiting the
recent general theory of genuine, maximally efficient self-
contained quantum thermal machines [6]. This is done by
interpreting the quadridot as a composite system, consisting
of an “effective” virtual qubit formed by the states
|0, 0,0, 1) and |d), which (through g,;) mediates the inter-
action between QD, and the reservoirs H, R, and R,. The
average occupations of the virtual qubit levels (determined
by the coupling with the reservoirs H, R, and R,) define the
effective (average) temperature of H, R, and R,, which is
perceived by QD,: such a temperature competes with 7 in
cooling down the dot and can be identified with the value of
T¢ of our model. Observing that the energy levels of
[0,0,0,1) and |d) are €, and €; + €3 + Uy, respectively,
from Ref. [6] we get

€] + €3 + Ud — €4
TH(GI + €3 + Ud) - TR€4’

Ti =TTy %)
which fits pretty well our numerical results [see Fig. 3(a)]
and which for Ty — oo yields Tx(1 — €4/[€; + €3 + Uy])
as the emergent absolute zero of the model.

Following Ref. [5], we evaluate the ratio 7 =
(J02)/{Jp4) between the heat current through the cold
and hot reservoirs, comparing it with the upper bound
[1 = (Tx/Ty)]/[(Tx/T-) — 1] posed by the Carnot limit,
and with the theoretical value ng, = (€; + €3 — €4)/€,4 of
Ref. [4] applied to the quadridot for U; = 0 [20]. The
dependence of 7 upon T is plotted in Fig. 3(d) for different
values of U,. We noticed that in the case of U,; = 0, the
efficiency of the quadridot converges indeed toward the
theoretical value 7, of Ref. [4] at least for large enough T,.

Measurements and effective local temperatures.—An
important question is whether this refrigeration effect is
accompanied with a cooling of QD,, namely, whether its
effective local temperature T(Ceff) decreases as Ty increases,
for sufficiently high Ty, in analogy with the qubit cooling
described in Ref. [4]. While for such an idealized qubit
model the definition of the local temperature is relatively
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straightforward, in nanoscale systems out of equilibrium,
local temperatures must be operationally defined [21].
The most common way to proceed is to introduce a probe
reservoir P (a “‘thermometer’’), which is weakly coupled
to that part of the system we are interested in (the dot
QD, in our case), and identify the effective temperature of
the latter with the value of the temperature 7p of the
probe which nullifies the heat flow through P. This proce-
dure yields a natural way of measuring the effect we
are describing and can be implemented easily in our
model by adding an extra term in (2) that connects the
new reservoir P to QD, with a tunnel amplitude I'p which
is much smaller than those associated with the other res-
ervoirs of the system. (In the calculation, we set the
ratio between I'p and T; of the other reservoirs to be of
the order 1073: this makes sure that the presence of P does

not perturb the system.) The obtained values of Tgff) are
presented in Fig. 3(a), where it is shown that, according to
this definition of the local temperature, the conditions for

cooling of QD, (i.e., T(Ceff) < T¢) are the same for the SCR
to work (implying incidentally that in this case T(Ceff) is
always greater than the emergent zero temperature of
the system T'¢).

The quantity T(CCff) introduced above has a clear opera-
tional meaning and, according to the literature, it is a
good candidate to define the effective temperature of
QD,. Still, it is important to acknowledge that in experi-
ments, the cooling of QD, can also be detected by using
the noninvasive techniques of, e.g., Ref. [22] to look at
the decrease of the mean asymptotic occupation number
of QD, ({n,) =0, 1,0,0|p>|0, 1,0, 0) + (d|p*|d)), with
respect to the same quantity computed when the SCR is
“turned off”” (e.g., (n9)=(0,1,0,0[p10,1,0,0) +{d|py|d),
where now pg’ is the asymptotic stationary state of the
system reached when all the reservoirs but C are discon-
nected, i.e., I';zc = 0). We notice, however, that the
cooling condition hereby defined does not coincide with
the same pictured in Fig. 3(a). We indeed exemplify in
Fig. 3(c) for U,; = 3 that, according to this new definition,
different operating regimes are possible for the SCR. The
QD, might be either colder (1, < n9 in zone I) or hotter
(ny > ng in region II) when the device extracts heat from
the C reservoir. Conversely, we might also achieve a colder
QD, when the quadridot pumps heat into the colder bath
(III). In region IV, none of the refrigeration effects are
active. Similar regimes emerge with other activation pre-
scriptions, such as defining (n9) as the occupation for
Ty = Tyr = T¢ while maintaining all tunnel couplings as
constant.

Conclusions.—We conclude with experimental consid-
erations. Quadridots in GaAs/AlGaAs heterostructures
have been implemented for cellular-automata computation
[23] and for single-electron manipulation [24]. Strongly
capacitively coupled QDs with interdot capacitance energy
(U, and U)) up to 1/3 of the intradot charging energy

(taken to be infinite in our model) can be fabricated with
current lithographic techniques [25]. The diagonal interdot
term U, is expected to be at most U||/\/§ =~ U, /2 from
geometrical considerations, but practically it is expected
to be much smaller [24]. The local charging energy can
be as big as 1 meV and usually represents about 20% of
the confinement energy [26], which is the typical tunable
value of the single-particle levels €;. Charging effects are
expected to be further enhanced by the presence of a
significant magnetic field, due to the emergence of the
incompressible antidot regime in the dots [27], possibly
allowing the working conditions to be achieved even more
easily. In this high-field regime, the spin or orbital Kondo
effect [28,29] is suppressed [30], as the transport becomes
spin polarized, so our effective description is expected to
be valid. A final ingredient for the quadridot to act as a SCR
is quantum coherence. In QDs, it is known that the main
source of decoherence comes from 1/ f noise arising from
background charge fluctuations [31] (however, coherent
manipulation of QDs has been reported in several experi-
ments; see, e.g., Ref. [32]). Accordingly, Eq. (3) acquires
an extra contribution whose effect (see the Supplemental
Material [33]) is to modify the steady-state populations.
In our setup, as long as the new rates are of the same order
of the ones due to the coupling to the leads, the quadridot
will still work as a SCR. [Note, indeed, that the boundary
between the regions in Fig. 3(a) does not depend on these
rates.] Possibly the only serious challenge is posed by the
need that the induced broadening should not be too large
with respect to 7. For the sake of simplicity, we adopted
small values of this parameter; however, it is very much
possible that higher values will help the efficiency of the
SCR by speeding up the |d) and |d) rotations. We finally
observe that the maximum thermal energies involved
should not exceed the large charging energies (i.e., <10 K).
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