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We present a theoretical study of an electronic quantum refrigerator based on four quantum dots

arranged in a square configuration, in contact with as many thermal reservoirs. We show that the system

implements the minimal mechanism for acting as a self-contained quantum refrigerator, by demonstrating

heat extraction from the coldest reservoir and the cooling of the nearby quantum dot.
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The increasing interest in quantum thermal machines
has its roots in the need to understand the relations bet-
ween thermodynamics and quantum mechanics [1,2]. The
progress in this field may as well have important applica-
tions in the control of heat transport in nanodevices [3]. In a
series of recent works [4–6], the fundamental limits to the
dimensions of a quantum refrigerator have been found.
It has been further demonstrated that these machines could
still attain Carnot efficiency [5], thus launching the call for
the implementation of the smallest possible quantum re-
frigerator. References [4–6] considered self-contained ther-
mal machines defined as those that perform a cycle without
the supply of external work, their action being grounded
on the steady-state heat transfer from thermal reservoirs
at different temperatures. The major difficulty in the real-
ization [7,8] of self-contained refrigerators (SCRs) is the
engineering of the crucial three-body interaction enabling
the coherent transition between a doubly excited state in
contact with a hot (H) and cold (C) reservoir, and a singly
excited state coupled to an intermediate (or ‘‘room,’’ R)
temperature bath. We get around this problem by proposing
an experimentally feasible implementation of a minimal
SCRwith semiconducting quantumdots (QDs) operating in
the Coulomb blockade regime. We are thus able to estab-
lish a connection between the general theory of quantum
machines and the heat transport in nanoelectronics [3].

QDs contacted by leads were proposed as ideal systems
for achieving high thermopower [9–11] or anomalous ther-
mal effects [12]. Here, we study a four-QD planar array
(hereafter named a ‘‘quadridot’’ for simplicity) coupled
to independent electron reservoirs as shown in Fig. 1;
with proper (but realistic) tuning of the parameters, we
will show that the quadridot acts as a SCR, which pumps
energy from the high temperature reservoir H and the low
temperature reservoir C to the intermediate temperature
reservoirs R1 and R2. Furthermore, we will analyze the
conditions under which the quadridot is able to cool the
dot QD2 which is directly connected to the bath C at an
effective temperature that is lower than the one it would
have had in the absence of the other reservoirs. This will
lead us to introduce an operative definition of the local

effective temperature, depending on the measurement
setup, and to predict the existence of working regimes
where, for instance, the refrigeration is not accompanied
by the cooling of QD2. We start analyzing the system
Hamiltonian, identifying the conditions that allow us to
mimic the behavior of the SCR of Ref. [4].
In the absence of the coupling to the leads, the quadridot

shown in Fig. 1 is described by the Hamitonian

H QD ¼ X

i¼1;...;4

�ini þ
X

i�j

Uij

2
ninj � tðcy1c4 þ cy2c3 þH:c:Þ;

where for i ¼ 1; . . . ; 4, cyi , ci, and ni ¼ cyi ci represent
respectively the creation, annihilation, and number opera-
tors associated with the ith QD. In this expression, the
quantities �i gauge the single-particle energy levels, t
defines the tunneling coupling between the dots, and Uij

describes the finite-range contribution of the Coulomb
repulsion. To reduce the maximum occupancy in each
QD to one electron, we will assume the on-site repulsion
terms Uii to be the largest energy scale in the problem.
Furthermore, in order to mimic the dynamics of Ref. [4],
we will take U12 ¼ U34 ¼ U? and U23 ¼ U14 ¼ Uk,
both much larger than the ‘‘diagonal’’ terms U24 ¼ U13 ¼
Ud, and tune the single-electron energy level of the

FIG. 1 (color online). The quadridot. The four quantum dots
QD1, QD2, QD3, and QD4 are weakly coupled to the reservoirs
R1, C, R2, and H, respectively, which are all grounded and
maintained at temperatures TH > ðTR1

¼ TR2
¼ TRÞ> TC.

Tunneling is allowed only between QD1 and QD4, and between
QD2 and QD3 (t being the gauging parameter).
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upper-right dot (which will be coupled to the cool
reservoir C) so that �2 ¼ �1 þ �3 � �4. These choices
ensure that in the absence of tunneling (t ¼ 0), the
‘‘diagonal’’ two-particle states jdi ¼ j1; 0; 1; 0i and j �di ¼
j0; 1; 0; 1i shown in Fig. 2 are degenerate (the charge
states are labeled according to the occupation of the four
dots jn1; n2; n3; n4i). These are the only states of the two-
electron sector which play an active role in the system
evolution, mimicking the role of the vectors j01i and j10i
of Ref. [4]. Because of the presence of U? or Uk, the other
configurations are indeed much higher in energy to get
permanently excited in the process. Still, the states jui ¼
j1; 1; 0; 0i and jli ¼ j0; 0; 1; 1i play a fundamental role in
the SCR as their presence generates (via a Schrieffer-Wolff
transformation [13,14] and the nonzero hoppings t) an
effective coupling term between jdi and j �di of the form
Heff ¼ gd �dðjdih �dj þ j �dihdjÞ with

gd �d ’
2t2ðUd �U?Þ

ðUd �U?Þ2 � ð�4 � �1Þ2
� t: (1)

In our model, gd �d is analogous to the perturbative parame-
ter g of Ref. [4]. Its role is to open a devoted channel which
favors energy exchanges between the couple H-C and the
couple R1-R2 by allowing two electrons to pass from the
first to the second through the mediation of the quadridot
states jdi (which is in contact withH andC) and j �di (which
is connected to R1 and R2). For proper temperature imbal-
ances, this is sufficient to establish a positive heat flux from
C to QD2 even if TC is the lowest of all bath temperatures.
The mechanisms can be heuristically explained as follows:
if TH is sufficiently higher than the other bath tempera-
tures, then the dot which has more chances of getting
populated by its local reservoir isQD4. When this happens,
the large values of U? and Uk will prevent QD1 and QD3

from acquiring electrons, too. On the contrary, while QD4

is populated, QD2 is allowed to accept an electron from
its reservoir C (Ud being much smaller than U? and Uk),
creating j �di. The coupling provided byHeff will then rotate
the latter to jdi, giving the two electrons (the one from H

and the one from C) a chance of being absorbed by R1-R2.
The opposite process (creation of jdi by absorption of a
couple of electrons from R1-R2, rotation to jdi, and final
emission toward H-C) is statistically suppressed due to
the (relatively) low probability that QD1 or QD3 will get
an electron from their reservoir before QD4 gets its
own from H: the net result is a positive energy flux from
H-C to R1-R2.
To verify this picture, we explicitly solve the open

dynamics of the quadridot and study its asymptotic behav-
ior. Specifically, we model our four local baths H, C, R1,
and R2 as independent electron reservoirs (leads) charac-
terized by their own chemical potential �i and their own
temperature [both quantities entering in the Fermi-Dirac
occupation functions fið�Þ associated with the reservoir].
For the sake of the simplest correspondence with the model
of Ref. [4], in this study, all �i will be set to be identical
and fixed to a value that will be used as reference for the
single-particle energies of the system (e.g., setting �i ¼ 0
in the Hamiltonian corresponds to have the ith quadridot
level at resonance with the Fermi energy of the reservoirs).
Furthermore, as detailed in the caption of Fig. 1, the
temperatures will be chosen to satisfy the relation TC <

TR1
¼ TR2

< TH [15]. Within these assumptions, the only

required external action is exerted in maintaining the local
equilibrium temperatures and chemical potential, in accor-
dance to the standard definition of self-containment. The
quadridot-bath couplings (parametrized by the amplitudes

�ðkÞ
i ) are hence expressed as tunneling terms of the form

HT ¼ X

i¼1;...;4

X

k

�ðkÞ
i cyi ai;k þ H:c:; (2)

with ai;k being an annihilation operator which destroys an

electron of momentum k in the lead i. In the Born-Markov-
Secular limit [16,17], these extra terms give rise to a
Lindblad equation for the reduced density matrix � of
the quadridot. The presence of t plus the rotation into the
low-energy sector eliminates degeneracies among all pos-
sible energy transitions between the eigenstates of the
quadridot. The evolution of � is then determined by

_� ¼ X

i

Di½��; (3)

where for each reservoir Di represents an associated
Lindblad dissipator. This equation can be solved in the
steady-state regime ( _� ¼ 0) yielding the asymptotic con-
figuration �1, from which the heat currents hJQ;ii flowing
through the ith reservoir are then computed as [16]

hJQ;ii ¼ TrðH QDDi½�1�Þ: (4)

If our implementation of the SCR is correct, we should
see a direct heat flow from the hot H and cold C reservoirs
to the reservoirs R1 and R2, while the dotQD2 should reach
an occupation probability corresponding to an effective
temperature which is lower than the one dictated by its

FIG. 2 (color online). Pictorial view of the low-energy elec-
tronic charged states (a black circle indicates occupation by an
electron). Because of the hoppings terms t and gd �d, the eigen-
states of the low-energy Hamiltonian are bonding-antibonding
states jdi � j �di and the four bonding-antibonding delocalized
single-particle states (the completely empty state is not shown).
For t ¼ 0, the two electron states jdi and j �di are resonant, while
jui and jli are the high-energy virtual states responsible for the
effective interaction gd �d coupling jdi and j �di.
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local reservoir C [see Fig. 3(b)]. We have verified this by
setting the system parameters to be consistent with those
presented in Ref. [4]—making sure, however, that for such
a choice no additional degeneracies are introduced into the
system due to the larger dimension of our physical model.
While the performances of the device do not change quali-
tatively when varying the parameters according to the
above prescriptions, in the following we focus on a specific
scenario where we fixed �1 ¼ 2:1, �3 ¼ 2:9, �4 ¼ 4:0, and
U? ¼ 12:0 (Uk instead is taken to be infinitely large for

simplicity as its effect could be absorbed in the energy
level renormalization after the Schrieffer-Wolff transfor-
mation). The value of gd �d is finally taken to be �0:001,
determining t ( &0:1) through Eq. (1), while the couplings

terms �ðkÞ
i which link the quadridot to the reservoirs via

Eq. (2) are chosen to provide effective dissipation rates of
order �0:0001 [18,19]. Solving numerically the steady-
state equation (3), we observe that for each TC < TR, there

exists a minimal threshold value for TH above which
the SCR indeed extracts heat from the cold reservoir C.
This is shown in Fig. 3(a) for TR ¼ 2 and different values
of Ud; the quadridot works as a SCR in the region above
the threshold. Consistently with the second principle of
thermodynamics, the threshold value of TH (black curve
in the plot) is always greater than TR ¼ 2 (for TH below
TR, the machine cannot produce work fromH to pump heat
from C), and the region above this threshold gets larger as
Ud gets smaller. The existence of a threshold for TH also
implies that for given TH > TR, there is a minimal tem-
perature T�

C for the cold reservoir under which the SCR

cannot work. Interestingly, for TH=TR ! 1, the value of
T�
C appears to asymptotically converge toward a finite

nonzero temperature which depends upon the engine
microscopic parameters and which can be interpreted as
the emergent absolute zero of the model. An approximate
analytical expression for T�

C can be derived exploiting the

recent general theory of genuine, maximally efficient self-
contained quantum thermal machines [6]. This is done by
interpreting the quadridot as a composite system, consisting
of an ‘‘effective’’ virtual qubit formed by the states
j0; 0; 0; 1i and jdi, which (through gd �d) mediates the inter-
action between QD2 and the reservoirs H, R1, and R2. The
average occupations of the virtual qubit levels (determined
by the couplingwith the reservoirsH,R1, andR2) define the
effective (average) temperature of H, R1, and R2, which is
perceived byQD2: such a temperature competes with TC in
cooling down the dot and can be identified with the value of
T�
C of our model. Observing that the energy levels of

j0; 0; 0; 1i and jdi are �4 and �1 þ �3 þUd, respectively,
from Ref. [6] we get

T�
C ’ TRTH

�1 þ �3 þUd � �4
THð�1 þ �3 þUdÞ � TR�4

; (5)

which fits pretty well our numerical results [see Fig. 3(a)]
and which for TH ! 1 yields TRð1� �4=½�1 þ �3 þUd�Þ
as the emergent absolute zero of the model.
Following Ref. [5], we evaluate the ratio � ¼

hJQ;2i=hJQ;4i between the heat current through the cold

and hot reservoirs, comparing it with the upper bound
½1� ðTR=THÞ�=½ðTR=TCÞ � 1� posed by the Carnot limit,
and with the theoretical value �th ¼ ð�1 þ �3 � �4Þ=�4 of
Ref. [4] applied to the quadridot for Ud ¼ 0 [20]. The
dependence of� uponTH is plotted in Fig. 3(d) for different
values of Ud. We noticed that in the case of Ud ¼ 0, the
efficiency of the quadridot converges indeed toward the
theoretical value�th of Ref. [4] at least for large enoughTH.
Measurements and effective local temperatures.—An

important question is whether this refrigeration effect is
accompanied with a cooling of QD2, namely, whether its

effective local temperature TðeffÞ
C decreases as TH increases,

for sufficiently high TH, in analogy with the qubit cooling
described in Ref. [4]. While for such an idealized qubit
model the definition of the local temperature is relatively

FIG. 3 (color online). (a) The panels refer to Ud ¼ 0 (left),
Ud ¼ 1 (center), and Ud ¼ 2 (right). When TH approaches the
black curve, i.e., at values very close to the analytical value of
Eq. (5) (dashed line), a change of sign in the heat flow occurs.
For TH above the threshold (blue region), the machine works as
pictured in (b), extracting heat from the C and H reservoirs and
pumping it into R. In the opposite regime (under the threshold,
red region), heat cannot be extracted from C. The dashed black
line above the gray region indicates TH ¼ TR ¼ 2. The back-
ground color intensity is proportional to the actual heat pumped
to (extracted from) C. (c) Comparison between heat extraction
and single-particle occupation for Ud ¼ 2. In regions I and II,
the SCR is working (heat is extracted from C), while in regions
III and IV, the C bath receives heat. In regions I and III, we have
an effective decrease of the occupation number of QD2 (i.e.,
hn2i< hn02i). (d) Efficiency of the SCR compared to the Carnot

efficiency (dashed black line) for TC ¼ 1:0. The curves repre-
sent, respectively from top to bottom,Ud ¼ 0 (blue), Ud¼1
(magenta), and Ud ¼ 2 (brown). The dashed horizontal line
indicates the maximum limit of efficiency for the quadridot
computed (for Ud ¼ 0) as in Ref. [4].
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straightforward, in nanoscale systems out of equilibrium,
local temperatures must be operationally defined [21].
The most common way to proceed is to introduce a probe
reservoir P (a ‘‘thermometer’’), which is weakly coupled
to that part of the system we are interested in (the dot
QD2 in our case), and identify the effective temperature of
the latter with the value of the temperature TP of the
probe which nullifies the heat flow through P. This proce-
dure yields a natural way of measuring the effect we
are describing and can be implemented easily in our
model by adding an extra term in (2) that connects the
new reservoir P to QD2 with a tunnel amplitude �P which
is much smaller than those associated with the other res-
ervoirs of the system. (In the calculation, we set the
ratio between �P and �i of the other reservoirs to be of
the order 10�3: this makes sure that the presence of P does

not perturb the system.) The obtained values of TðeffÞ
C are

presented in Fig. 3(a), where it is shown that, according to
this definition of the local temperature, the conditions for

cooling of QD2 (i.e., T
ðeffÞ
C < TC) are the same for the SCR

to work (implying incidentally that in this case TðeffÞ
C is

always greater than the emergent zero temperature of
the system �TC).

The quantity TðeffÞ
C introduced above has a clear opera-

tional meaning and, according to the literature, it is a
good candidate to define the effective temperature of
QD2. Still, it is important to acknowledge that in experi-
ments, the cooling of QD2 can also be detected by using
the noninvasive techniques of, e.g., Ref. [22] to look at
the decrease of the mean asymptotic occupation number
of QD2 (hn2i ¼ h0; 1; 0; 0j�1j0; 1; 0; 0i þ hdj�1jdi), with
respect to the same quantity computed when the SCR is
‘‘turned off’’ (e.g., hn02i¼h0;1;0;0j�1

0 j0;1;0;0iþhdj�1
0 jdi,

where now �1
0 is the asymptotic stationary state of the

system reached when all the reservoirs but C are discon-
nected, i.e., �i�C ¼ 0). We notice, however, that the
cooling condition hereby defined does not coincide with
the same pictured in Fig. 3(a). We indeed exemplify in
Fig. 3(c) for Ud ¼ 3 that, according to this new definition,
different operating regimes are possible for the SCR. The
QD2 might be either colder (n2 < n02 in zone I) or hotter

(n2 > n02 in region II) when the device extracts heat from
the C reservoir. Conversely, we might also achieve a colder
QD2 when the quadridot pumps heat into the colder bath
(III). In region IV, none of the refrigeration effects are
active. Similar regimes emerge with other activation pre-
scriptions, such as defining hn02i as the occupation for

TH ¼ TR ¼ TC while maintaining all tunnel couplings as
constant.

Conclusions.—We conclude with experimental consid-
erations. Quadridots in GaAs=AlGaAs heterostructures
have been implemented for cellular-automata computation
[23] and for single-electron manipulation [24]. Strongly
capacitively coupled QDs with interdot capacitance energy
(U? and Uk) up to 1=3 of the intradot charging energy

(taken to be infinite in our model) can be fabricated with
current lithographic techniques [25]. The diagonal interdot

term Ud is expected to be at most Uk=
ffiffiffi
2

p ’ U?=
ffiffiffi
2

p
from

geometrical considerations, but practically it is expected
to be much smaller [24]. The local charging energy can
be as big as 1 meV and usually represents about 20% of
the confinement energy [26], which is the typical tunable
value of the single-particle levels �i. Charging effects are
expected to be further enhanced by the presence of a
significant magnetic field, due to the emergence of the
incompressible antidot regime in the dots [27], possibly
allowing the working conditions to be achieved even more
easily. In this high-field regime, the spin or orbital Kondo
effect [28,29] is suppressed [30], as the transport becomes
spin polarized, so our effective description is expected to
be valid. A final ingredient for the quadridot to act as a SCR
is quantum coherence. In QDs, it is known that the main
source of decoherence comes from 1=f noise arising from
background charge fluctuations [31] (however, coherent
manipulation of QDs has been reported in several experi-
ments; see, e.g., Ref. [32]). Accordingly, Eq. (3) acquires
an extra contribution whose effect (see the Supplemental
Material [33]) is to modify the steady-state populations.
In our setup, as long as the new rates are of the same order
of the ones due to the coupling to the leads, the quadridot
will still work as a SCR. [Note, indeed, that the boundary
between the regions in Fig. 3(a) does not depend on these
rates.] Possibly the only serious challenge is posed by the
need that the induced broadening should not be too large
with respect to t. For the sake of simplicity, we adopted
small values of this parameter; however, it is very much
possible that higher values will help the efficiency of the
SCR by speeding up the jdi and j �di rotations. We finally
observe that the maximum thermal energies involved
should not exceed the large charging energies (i.e.,&10 K).
We acknowledge useful discussions with C.W. J.
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