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We investigate the magnetic field dependent thermopower, thermal conductivity, resistivity, and

Hall effect in the heavy fermion metal YbRh2Si2. In contrast to reports on thermodynamic measurements,

we find in total three transitions at high fields, rather than a single one at 10 T. Using the Mott formula

together with renormalized band calculations, we identify Lifshitz transitions as their origin. The

predictions of the calculations show that all experimental results rely on an interplay of a smooth

suppression of the Kondo effect and the spin splitting of the flat hybridized bands.
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Since their discovery four decades ago, Kondo lattice
systems pose a challenge to condensed-matter physicists.
Above the characteristic Kondo temperature TK, they con-
tain a periodic lattice of local 4f-derived paramagnetic
moments. Below TK, these moments become reduced and
eventually fully screened by the conduction electrons: The
entanglement of the localized 4f states with the delocal-
ized conduction-band states leads to the formation of local
Kondo singlets, which develop weak dispersion as a con-
sequence of their periodic arrangement (Bloch’s theorem)
[1]. The delocalized Kondo singlets act as (composite)
charge carriers, which exhibit a large effective mass (heavy
fermions) due to the extremely strong on-site Coulomb
correlations. This is inferred from a huge Sommerfeld
coefficient of the electronic specific heat [2] but is invis-
ible, e.g., in photoelectron spectroscopy [3], probing one-
electron properties.

Recently, the effect of a magnetic field on these com-
posite fermions has become an important issue. First, most
information on these quasiparticles comes from de
Haas–van Alphen (dHvA) experiments performed at high
fields. However, band structure calculations, necessary to
analyze these experimental results, exist almost exclu-
sively at zero field [4,5]. Second, many heavy fermion
systems undergo a metamagnetic transition at fields of
the order of 10 T [6–9], where in some cases direct evi-
dence (from dHvA) for a change of the Fermi surface (FS)
and thus, of the heavy quasiparticles has been found [5,10],
the origin of which remains controversial.

YbRh2Si2 is such a case: Specific heat, susceptibility,
and magnetostriction measurements revealed anomalies
at a critical field B0 ¼ 10 T, indicating a rapid decrease
of the effective mass at B0 [9,11,12]. This was initially
interpreted as a breakdown of the Kondo screening. Later,
dHvA experiments were interpreted in terms of a Lifshitz

transition at B0, where a spin-split band disappears
[5,13,14]. While these two interpretations seem quite dif-
ferent at first sight, they essentially rely on a similar model:
Only in the presence of the very flat bands of the composite
fermions, the Zeeman splitting can induce such large ef-
fects on the FS at moderate fields as observed inYbRh2Si2.
Simultaneously, a splitting also leads to a continuous
decrease of the quasiparticle mass. Therefore, the field
scale for both processes is related to TK.
In order to get more insight into the field evolution of the

quasiparticles and into the connection between destruction
of the composite fermions and the occurrence of Lifshitz
transitions, we performed detailed, field dependent trans-
port studies in YbRh2Si2 in fields to at least 12 T. We focus
on the effects far above the quantum critical point (QCP)
at B ¼ 0:06 T. In contrast to reports on thermodynamic
measurements [9,11,12], we show that the transition at B0

consists of two close-lying features. Moreover, we observe
an additional transition at 3.4 T. From the remarkable
agreement between thermopower, electrical conductivity,
and magnetostriction above 2 T within the framework of
Mott’s formula, we demonstrate that all three transitions
are caused by band structure effects.
We compare our experimental results with predictions

of renormalized band (RB) structure calculations. They
reveal three successive Lifshitz transitions at the three
experimentally observed transition fields. This agreement
demonstrates that the observed field evolution results
from an interplay of a smooth suppression of the Kondo
effect and the spin splitting of a sharply structured density
of states (DOS) generated by a strong anisotropic
hybridization.
We investigated three high quality samples from the

same batch, with residual resistivities of approximately
0:5 ��cm. On sample 1 we performed simultaneous dc
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resistivity, thermal conductivity, and thermopower mea-
surements down to 0.1 K and for 0:2 T � B � 12 T using
soldered contacts as in Ref. [15]. Sample 2 was used to
extend the resistivity data down to 0.03 K on another
setup applying an ac technique. We also performed
Hall-effect measurements on sample 3 down to 0.05 K
and up to 15 T. The magnetic field B was always applied
perpendicular to the c axis. The currents for resistivity and
thermal transport were parallel to B, for the Hall effect
perpendicular to c and B.

Figures 1(a) and 1(b) show the low-temperature
magnetoresistivity �ðBÞ and the isothermal, field-
dependent thermopower SðBÞ, respectively. The Lorenz
ratio LðBÞ=L0 ¼ �ðBÞ�ðBÞ=TL0 obtained from magneto-
resistance and thermal conductivity � using Sommerfeld’s
constant L0 ¼ �2k2B=3e

2, is shown in Fig. 1(c) only for
490 mK, because of an enhanced noise level at lower
temperatures. Considering the B-T phase diagram of
YbRh2Si2 [9], it is natural to relate the low-field

(B< 2 T) behavior of all these quantities to the signatures
of the QCP and the surrounding non-Fermi liquid regime.
These signatures are in agreement with previously reported
results: the step in magnetoresistance [16], the pronounced
minimum in SðBÞ=T [17], and the minimum of the isother-
mal Lorenz ratio [18] are clearly visible.
Next, we focus on the high-field properties beyond

2 T, where YbRh2Si2 is a Fermi liquid below 200 mK
[9]. The key features are three transitions visible as tiny
kinks in the magnetoresistance at B1 ¼ ð3:4� 0:1Þ T,
B2¼ð9:3�0:1ÞT, and B3 ¼ ð11:0� 0:2Þ T in Fig. 1(a).
Their position is sample and temperature independent,
cf. also [19]. The transitions are more obvious in the
thermopower [Fig. 1(b)]: SðBÞ=T shows three pronounced
steps, which become sharper at lower T.
These observations are interesting from two perspec-

tives. First, previous measurements have not observed
features at 3.4 T [9,11,12]. Second, the transition reported
in magnetization, specific heat, and magnetostriction
[9,11,12] at roughly 10 T is actually composed of two
well-separated features at 9.3 and 11.0 T, which do not
merge in the extrapolation T ! 0.
We further analyze our data using the Mott formula [20]

for the diffusion thermopower to clarify if the observed
features have a thermodynamic origin. Phonon drag con-
tributions to the thermopower are negligible in this
temperature range [21]. The Mott formula generally holds
at low temperatures in the absence of inelastic scattering
[22]. To expand it, we first exchange the energy derivative
of ln� with the field derivative using @B=@�. In the second

step, we use � ¼ ne2�=m� together with m� / N2=3

(in 3D) and obtain
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where � ¼ 1=� is the electrical conductivity, n the total
electron concentration, N the DOS, m� the effective mass,
and � the scattering time. This splits the thermopower into
a scattering part (�) and a part representing the band
structure (N).
To test the first expansion in Eq. (1), we compare SðBÞ=T

with @ ln�=@B in Fig. 2(a). Above 3 T, both curves can be
scaled on top of each other using a constant @B=@�. This
suggests a linear relationship between � and B, which we
write as an effective Zeeman energy � ¼ geff�BB=2, with
geff of 16� 1 (�B is the Bohr magneton), and discuss later
on. Moreover, it implies that inelastic scattering (which
would invalidate the Mott formula) is insignificant in this
regime. In the low-field region below 2 T both curves show
a disparate behavior. Consequently, either � / B is violated
or inelastic scattering is significant. Both are likely to occur
close to a QCP: The first can arise if there are dramatic
changes in the magnetization, the band structure, or the FS.
Inelastic scattering can increase close to a phase transition.
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FIG. 1 (color online). Magnetoresistance �, thermopower
S=T, and Lorenz ratio L=L0 plotted as a function of magnetic
field B. Lines and dots denote field sweeps; open squares are
extracted from temperature sweeps. (a) � shows three kinks at
B1 ¼ 3:4 T, B2¼9:3T, and B3 ¼ 11:0 T. Insets: enlarged view
for 0.03 and 0.19 K. (b) S=T of sample 1 at the same tempera-
tures as in (a). The complex behavior with several zero crossings
reflects the multiband character of YbRh2Si2. All three transi-
tions are characterized by pronounced steps (insets: enlarged
view). (c) The Lorenz ratio at 0.49 K is below unity with a
minimum at about 0.5 T.
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We now turn to the second expansion of Eq. (1). Several
thermodynamic probes give access to the contribution from
the DOS, while being independent of scattering effects. We
use the linear magnetostriction coefficient �, since the data
available have a higher resolution than, e.g., specific heat
or magnetization. Applying a constant scaling factor,
@ ln�=@Bmatches S=T in Fig. 2(b), which implies a power
law � / N	. Only the double hump around 10 T is more
pronounced. Considering the nice agreement at low fields,
it is likely that the discrepancy of S and � in this regime is
due to enhanced inelastic scattering rather than a failure of
�� B. The surprisingly good qualitative agreement, espe-
cially at B1, B2, and B3, proves that the origin of all three
transitions lies within the correlated band structure of
YbRh2Si2.

Our experimental data together with previous results
already indicate the complex nature of these band struc-
ture effects. For example, the transition around B0 is
composed of two fields and the Sommerfeld coefficient

ðBÞ decreases only moderately between them from
250 mJ=molK2 to 100 mJ=molK2. It is therefore unlikely
that either a single Lifshitz transition [5] or a sudden
localization of the f electrons [9,11,12] is—on its own—
a sufficient model to describe this behavior. Hence, a
theory of the field evolution should include not only the
Kondo effect to describe derenormalization processes, but

also the specific correlated band structure to reveal topo-
logical transitions.
We therefore conducted field-dependent RB calculations

(Fig. 3), which are an extension to the results from
Ref. [23], focused on the detailed development of the FS
and the DOS in field. We used the RB method described
in Refs. [23,24] with a tight k mesh in zero field of 8125
points in the irreducible wedge to resolve changes in the
isoenergy surfaces. In finite fields we used 405 k points.
Figure 3(a) shows the calculated zero-field quasiparticle

DOS Nð�Þ. Figure 3(b) displays the corresponding isoe-
nergy surfaces of the most important FS sheets with f
character—the so-called ‘‘doughnut’’ (top) and the ‘‘jungle
gym’’ (bottom), respectively. Scanning through Nð�Þ
within the displayed energy range, the calculations predict
the four color-coded regimes characterized by different
topologies of the isoenergy surfaces, separated by
Lifshitz transitions.
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FIG. 2 (color online). Analysis of the thermopower with the
Mott formula. The measured S=T (dots) is compared with
that calculated (lines) from (a) the electrical conductivity and
from (b) the magnetostriction coefficient using Eq. (1) with
@ lnN=@B / @ ln�=@B and @ ln�=@B ¼ 0. Within the Fermi
liquid regime (B > 2� 3 T) all curves show the same overall
behavior. Insets: Calculated DOS at �F using thermopower data
at 0.1 K. For the left inset þS and for the right inset �S was
integrated to match the band structure calculations from
Ref. [23].

FIG. 3 (color online). Isoenergy surfaces for B ¼ 0 and the
quasiparticle DOS development in finite field calculated using
the RB method. The zero-field DOS in (a) is divided into four
regions [blue (A), green (B), yellow (C), red (D)] distinguished
by different topologies of the isoenergy surfaces shown in (b).
In the yellow region (C), we show in plan the ‘‘jungle gym’’
FS sheet exactly at the topological transition between B and C.
(c) illustrates the magnetic field evolution of the DOS for
selected fields, with the zero-field DOS in gray for comparison.
Inset in (a): Energy-field map of the DOS interpolated in 1 T
steps. One can assign the four energy regions and their isoenergy
surfaces in (a) and (b) to the four field ranges and their FS
separated by ~B1, ~B2, and ~B3.
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An applied magnetic field spin-splits the DOS into a
minority and a majority branch. These do not shift rigidly
in field but the amplitude of the coherence peak decreases
[Fig. 3(c)], mainly because of the weakening of the Kondo
effect. Nevertheless, the characteristics of the band struc-
ture are not changed. Therefore, we expect the energy
evolution of the isoenergy surfaces in Fig. 3(b) to be
the same as the field evolution of the FS. I.e., the FS of
the majority band stays in the red (D) regime, while the
FS topology of the minority band changes from the red (D)
type through yellow (C) and green (B) to the blue
one (A).

We take advantage of the similar shape of the zero- and
finite-field DOS and assign the energy of a topology
change (in zero field) to a magnetic field where the corre-
sponding feature in the DOS crosses �F: The transition
from the blue (A) to the green (B) regime corresponds to a
kink in the DOS which reaches �F for ~B3 ¼ ð11� 1Þ T.
Similarly, we obtain ~B2 ¼ ð9� 1Þ T for the second tran-
sition [green (B)—yellow (C)]. The difference ~B3 � ~B2 fits
to the linear shift of 0:1 meV=T [inset Fig. 3(a)], which in
turn matches the electron spin resonance g factor of 3.5
[25] (applying ~� ¼ g�BB=2). We use this shift to estimate
the field corresponding to the weak third transition from
yellow (C) to red (D) to ~B1 ¼ ð2:5� 1Þ T. These fields,
extracted from the calculations, are in excellent agreement
with the transitions B1, B2, and B3 found experimentally.
This proves that they correspond to three Lifshitz transi-
tions of the types illustrated in Fig. 3(b).

Additionally, the linear sweep of the van Hove singu-
larity predicted by our calculations confirms the linear
energy-field dependence found in our data analysis.
The only adjustable parameter leading to the remarkable
accuracy of the Mott formula in the two comparisons
shown in Fig. 2 is geff . Moreover, the thermopower as
well as @ ln�=@B and @ ln�=@B are independent of sample
geometry; thus, systematic errors are almost negligible.
The difference between geff ¼ 16 (corresponding to a
@�=@B ¼ 0:5 meV=T) and g ¼ 3:5 (0:1 meV=T) from
our calculations, however, is not surprising, since a rigid
band shift is obviously insufficient to account for the
experimental data. Unexpectedly, these field-induced
changes of the band structure also enter linearly into geff .

To include an additional link between our experimental
data and the RB calculations, we draw upon the good
qualitative agreement between S=T and � in Fig. 2(b)
and calculate the field dependent DOS at �F straightfor-
wardly from the thermopower measurements by integrat-
ing S over B [ignoring (@ ln�=@B) in Eq. (1)]. Importantly,
the so-obtained DOS [Fig. 2(b)] matches the features at the
transition fields as calculated by the RB method (see Fig. 5
in Ref. [23]): a kink at B1 and a steplike decrease between
B2 and B3.

Our results agree with the low-temperature heavy
Fermi liquid state observed at B> 0:06 T, i.e., in the

paramagnetic Kondo-lattice phase. While, according to
Numerical Renormalization Group results for a single
impurity (see, e.g., [26–29]), the suppression of the
on-site Kondo screening by a magnetic field implies a
continuous decrease of the effective mass m�, we observe
abrupt changes in thermodynamic and transport properties
related to m�. Therefore, the single impurity model alone
cannot account for the observations reported here. The
latter have to be attributed to coherence effects arising
from the periodic arrangement of the Kondo ions and are
well explained by our RB calculations. The anisotropic
hybridization of the 4f states with the conduction bands,
caused by the highly anisotropic crystalline electric field
ground state, leads to van Hove–type singularities in the
quasiparticle DOS. The structures in the quasiparticle DOS
highlight changes of the isoenergy surfaces as shown in
Fig. 3. In a magnetic field, the 4f states are split which, in
turn, leads to a Zeeman splitting of the quasiparticle bands.
The relative shifts of the latter, however, are enhanced by a
field-dependent Sommerfeld-Wilson ratio which reflects
the local many-body effects.
Experimentally, further insight into the evolution of the

FS can be obtained by Hall effect measurements. The
isothermal Hall resistivity �xyðBÞ for selected T is pre-

sented in the inset of Fig. 4 and indicates hole-dominated
transport. Importantly, beyond 12 T all curves coincide
pointing towards a field-driven suppression of the local
Kondo effect. This is a continuous process and likely
accounts for the maximum in the effective carrier concen-
tration, 1=RH ¼ 1=ðd%xy=dBÞ, at around 6 T and lowest

temperatures via the hybridization of conduction and 4f
electrons. For T > 0:2 K an anomalous contribution to RH

comes into play ([30,31]) such that 1=RH no longer tracks
the carrier concentration. The transitions at B1, B2, and B3

appear also in the transverse magnetoresistance (j ? B,
not shown) measured on sample 3 with the same signatures
as in the longitudinal magnetoresistance [Fig. 1(a)].
However, the extrema in RHðBÞ simultaneously measured
on sample 3 are at slightly different fields. The latter might
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be caused by the complex nature of the Hall effect [32]
(e.g., multiple bands).

In conclusion, we showed that the thermopower is par-
ticularly suitable for revealing field induced changes in the
FS of a correlated metal, hardly detectable by any other
probe. In YbRh2Si2, we find three successive transitions,
which were identified as Lifshitz transitions by a compari-
son with predictions from detailed RB calculations. This
implies that the unusual high-field properties of YbRh2Si2
arise from the interplay of (a) the symmetry of the crystal-
line electric field ground state (g factor, anisotropic hy-
bridization), (b) the suppression of the local Kondo effect
(reduced effective mass, field-dependent Sommerfeld-
Wilson ratio), and (c) the coherence effects due to the
periodicity of the lattice (van Hove singularities, Lifshitz
transitions). The excellent agreement between our experi-
mental results and our RB calculations demonstrates that
RB calculations are a very suitable approach to describe
quasiparticles in the Kondo lattice.
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J. Custers, J. Ferstl, C. Geibel, and F. Steglich, J. Magn.
Magn. Mater. 272–276, E87 (2004).

[12] Y. Tokiwa, P. Gegenwart, T. Radu, J. Ferstl, G. Sparn,
C. Geibel, and F. Steglich, Phys. Rev. Lett. 94, 226402
(2005).

[13] I.M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).
[14] M. Bercx and F. F. Assaad, Phys. Rev. B 86, 075108

(2012).
[15] H. Pfau, R. Daou, M. Brando, and F. Steglich, Phys. Rev.

B 85, 035127 (2012).
[16] P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa,

S. Paschen, C. Geibel, F. Steglich, E. Abrahams, and
Q. Si, Science 315, 969 (2007).

[17] S. Hartmann, N. Oeschler, C. Krellner, C. Geibel, S.
Paschen, and F. Steglich, Phys. Rev. Lett. 104, 096401
(2010).

[18] H. Pfau, S. Hartmann, U. Stockert, P. Sun, S. Lausberg, M.
Brando, S. Friedemann, C. Krellner, C. Geibel, S. Wirth,
S. Kirchner, E. Abrahams, Q. Si, and F. Steglich, Nature
(London) 484, 493 (2012).

[19] A. Pourret, G. Knebel, T. D. Matsuda, G. Lapertot, and
J. Flouquet, J. Phys. Soc. Jpn. 82, 053704 (2013).

[20] N. F. Mott and E. A. Davis, Electronic Processes in
Noncrystalline Materials (Oxford University, Oxford,
1971).

[21] S. Hartmann, Ph.D. thesis, Technische Universität
Dresden, 2010.

[22] M. Jonson and G.D. Mahan, Phys. Rev. B 21, 4223
(1980).

[23] G. Zwicknagl, J. Phys. Condens. Matter 23, 094215
(2011).

[24] G. Zwicknagl, Adv. Phys. 41, 203 (1992).
[25] U. Schaufuß, V. Kataev, A. A. Zvyagin, B. Büchner,
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