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We show how strong steady-state entanglement can be achieved in a three-mode optomechanical system

(or other parametrically coupled bosonic system) by effectively laser cooling a delocalized Bogoliubov

mode. This approach allows one to surpass the bound on the maximum stationary intracavity entanglement

possible with a coherent two-mode squeezing interaction. In particular, we find that optimizing the relative

ratio of optomechanical couplings, rather than simply increasing their magnitudes, is essential for

achieving strong entanglement. Unlike typical dissipative entanglement schemes, our results cannot be

described by treating the effects of the entangling reservoir via a Linblad master equation.
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Introduction.—The study of highly entangled quantum
states is of interest both for fundamental reasons and for a
myriad of applications in quantum information processing
and quantum communication. Of particular fundamental
interest is the possibility to entangle distinct macroscopic
objects, a task made difficult by the unavoidable decoher-
ence and dissipation associated with such systems. Equally
interesting would be the ability to entangle photons of very
different frequencies, e.g., microwave and optical photons.

A promising venue for the realization of both of these
kinds of entanglement is provided by quantum optome-
chanics, where macroscopic mechanical degrees of free-
dom can be controlled, measured, and coupled using the
modes of an electromagnetic cavity. Recent milestones in
this field include the ability to cavity cool a mechanical
resonator to its ground state of motion [1,2] and the obser-
vation of many-photon strong coupling effects [3–6]. A
natural setting for entanglement generation is a three-mode
optomechanical system consisting of two ‘‘target’’ modes
to be entangled, which are each coupled to a third
‘‘auxiliary’’ mode. One could either have two optical target
modes and a mechanical auxiliary mode, or vice versa; both
variants have recently been achieved in experiment [7–9].
Several theoretical studies have described such schemes,
using the basic idea that the auxiliary mode mediates an
effective (coherent) two-mode squeezing interaction
between the two target modes (see, e.g., Refs. [10–13]).
However, such schemes typically yield at best a relatively
small amount of intramode entanglement (something which
we quantify more fully below).

In this Letter, we again consider generating steady-state
entanglement of two bosonic modes in a three-mode sys-
tem; while we focus on an optomechanical realization, our
ideas could also be realized using superconducting circuits
coupled via Josephson junctions [14,15] or other paramet-
rically coupled three-bosonic-mode systems. Unlike pre-
vious works, we consider the possibility of entanglement
via reservoir engineering [16]: we wish to tailor the dis-
sipative environment of the two target modes such that the

dissipative dynamics relaxes the system into an entangled
state. Such dissipative entanglement has been discussed in
the context of atomic systems [17–21] and has even been
realized experimentally [22].
The dissipative entanglement scheme we describe is

related to optomechanical cavity-cooling schemes [23,24]
which have been used successfully to cool mechanical
resonators to the ground state. In our case, one is not
cooling a simple mechanical mode to the ground state,
but rather a hybrid mode delocalized over both target
modes. In contrast to previous reservoir-engineering
approaches to entanglement generation, where the dynam-
ics is reduced to a simple Markovian master equation for
the target degrees of freedom, our treatment is valid even in
the regime where a simple adiabatic elimination of the
intermediate mode is not possible. As we show, this regime
turns out to be the most effective at generating entangle-
ment. Our result shows that by optimizing the ratio of
optomechanical coupling strengths, rather than simply
increasing their magnitudes, this laser-cooling mechanism
can be used to yield large amounts of time-independent
intracavity entanglement. The amount of entanglement is
far greater than in previous studies and, in fact, far greater
than the maximum possible entanglement allowed by a
coherent parametric interaction. Note that reservoir engi-
neering in optomechanics has previously been studied
theoretically, with the very different goal of generating
long-range coherence in arrays [25].
System and normal modes.—While our scheme applies

to a general bosonic three-mode system, we focus here on
an optomechanical system where two optical or microwave
cavity modes are coupled to a single mode of a mechanical
resonator (see Fig. 1); see the Supplemental Material [26]
for a discussion of entangling two mechanical modes
coupled to a cavity mode. The Hamiltonian is

Ĥ ¼ !Mb̂
yb̂þ X

i¼1;2

ð!iâ
y
i âi þ giðb̂y þ b̂Þâyi âiÞþ Ĥdiss:

(1)
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âi is the annihilation operator for cavity i (frequency !i,

damping rate �i), b̂ is the annihilation operator of the
mechanical mode (frequency !M, damping rate �), and

gi are the optomechanical coupling strengths. Ĥdiss

describes the dissipation of each mode, as well as the
driving of the cavity modes. To achieve an entangling
interaction, cavity 1 (2) is driven at the red (blue) sideband
associated with the mechanical resonator: !d1¼!1�!M

and !d2 ¼ !2 þ!M [12]. We work in an interaction

picture with respect to the cavity drives, and write âi ¼
�ai þ d̂i where �ai is the classical cavity amplitude. We take
j �a1;2j � 1, which allows us to linearize the optomechan-

ical interaction in the usual way (i.e., drop interaction
terms not enhanced by the classical cavity amplitudes).
The linearized Hamiltonian in the rotating frame is thus

Ĥ ¼ !Mðb̂yb̂þ d̂y1 d̂1 � d̂y2 d̂2Þ þ Ĥint þ ĤCR þ Ĥdiss with

Ĥ int ¼ G1ðb̂yd̂1 þ d̂y1 b̂Þ þG2ðb̂d̂2 þ d̂y2 b̂
yÞ; (2)

Ĥ CR ¼ G1ðb̂yd̂y1 þ d̂1b̂Þ þG2ðb̂yd̂2 þ d̂y2 b̂Þ: (3)

HereGi¼gi �ai (we take gi, �ai>0without loss of generality).
We further focus on the resolved-sideband regime !M �
�1, �2, which suppresses the effects of the nonresonant

interactions in ĤCR. The remaining interaction Ĥint in

Eq. (2) has the basic form suitable for entangling d̂1 and

d̂2: on a heuristic level, the parametric-amplifier interaction

(G2 term) first entangles d̂2 and b̂, and then the beam-splitter

interaction (G1 term) swaps the b̂ and d̂1 states, thus yield-
ing the desired entanglement.

Note that if one made the interactions in Eq. (2) non-
resonant (e.g., by detuning the cavity drives from the
sideband resonances by �), one could adiabatically elimi-
nate the mechanical mode, resulting in a two-mode squeez-

ing interaction ĤTMS ’ �ðd̂1d̂2 þ H:c:Þ with ��G1G2=�
[27]. Such an interaction naturally leads to entanglement,
but the amount is severely limited by the requirement of
stability � � �1;2=2. We quantify the entanglement using

the standard measure of the logarithmic negativity EN

(see the Supplemental Material [26]). One finds that the
maximum stationary intracavity entanglement due to the
two-mode squeezing coupling is (for �1 ¼ �2 and zero
temperature) EN ¼ lnð1þ 2�=�Þ � ln2� 0:7. Many sug-
gested schemes for entanglement generation in optome-
chanical systems are limited by this stability requirement.
In contrast, the resonant case we consider allows for an

alternative dissipative entanglement mechanism capable of
much larger EN . We will focus attention on the regime
G2 <G1 where (for �1 ¼ �2) our linear system is always
stable (see the Supplemental Material [26]). Defining
the effective two-mode squeezing parameter r ¼
arctanhðG2=G1Þ, we introduce delocalized (canonical) cav-
ity Bogoliubov mode operators:

�̂A ¼ d̂1 coshrþ d̂y2 sinhr � ŜðrÞd̂1ŜyðrÞ;
�̂B ¼ d̂y1 sinhrþ d̂2 coshr � ŜðrÞd̂2ŜyðrÞ:

(4)

Here, ŜðrÞ � exp½rd̂1d̂2 � H:c:� is a two-mode squeezing

operator. It thus follows that the joint vacuum of �̂A, �̂B is

the two-mode squeezed state jri ¼ ŜðrÞj0; 0i, where j0; 0i
is the vacuum of d̂1, d̂2. The entanglement of this state is
simply EN ¼ 2r.

In terms of these new operators, Ĥ0 ¼ !Mðb̂yb̂þ
�̂y

A�̂A � �̂y
B�̂BÞ and the optomechanical interactions in

Eqs. (2) and (3) take the simple form

Ĥ int ¼ ~G�̂y
Ab̂þ H:c:; ĤCR ¼ ~G�̂y

Ab̂
y þ H:c:; (5)

where ~G �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

1 �G2
2

q
. The mode �̂B completely decou-

ples from the mechanics (it is a mechanically dark mode

[28,29]), while in the good-cavity limit of interest ĤCR can

be neglected, implying that the mode �̂A has a simple

beam-splitter interaction with the mechanics. Ĥ0 þ Ĥint

is trivially diagonalized, resulting in hybridized modes

�̂� ¼ ð�̂A � b̂Þ= ffiffiffi
2

p
with energies !M � ~G. The existence

of three distinct eigenmodes (two hybrid, one dark) can be
useful to understand entanglement (in particular spectral
entanglement [13,30]) in the case where the mechanical
mode is driven by excessive thermal noise; we will discuss
this in a future work. We focus here on generating intra-
cavity entanglement, which has the benefit of being insen-
sitive to whether internal losses contribute to the damping
rate � of the cavities.
We now exploit the fact that Eq. (5) has exactly the form

used for standard cavity cooling [23,24]. Thus, if we can

couple the mechanical mode b̂ to a cold reservoir, then the

beam-splitter coupling Ĥint can be used to cool �̂A towards
vacuum, resulting in a stationary entangled state. A high-
frequency, low-Q mechanical resonator would thus be
ideal. Alternatively, we will take the mechanical mode to
be coupled to a third cavity mode which is used to laser
cool its thermal occupancy towards the ground state by
providing a source of cold damping (see Fig. 1). In what

cavity 1 cavity 2 

cold mechanical  
mode = 

engineered reservoir 

FIG. 1 (color online). Schematic of one realization of a three-
mode optomechanical system, where two cavity modes are
coupled to a single mode of a mechanical resonator. By driving
cavity 1 (2) at the red (blue) detuned mechanical sideband, a
dissipative entanglement mechanism is realized. To enhance the
scheme, the mechanical resonator is cavity cooled and optically
damped via a coupling to a third driven cavity mode, so that
its total damping rate � is greater than the damping rate � of
each cavity.
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follows, we include the cooling cavity coupled to the
mechanical resonator in the definition of its effective
thermal bath; hence, the damping rate � includes the large
contribution of the optical damping. Amusingly, our
scheme is one of the few examples in optomechanics
where the enhanced mechanical damping rate resulting
from cavity cooling is actually highly beneficial.

Langevin equations and cavity cooling.—To describe the

cooling potential of Ĥint, we next use input-output theory
to derive the Heisenberg-Langevin equations for our line-
arized system. These take the standard form

d

dt
b̂ ¼

�
�i!M � �

2

�
b̂� iðG1d̂1 þG2d̂

y
2 Þ �

ffiffiffiffi
�

p
b̂in;

d

dt
d̂1 ¼

�
�i!M � �1

2

�
d̂1 � iG1b̂� ffiffiffiffiffiffi

�1

p
d̂1;in;

d

dt
d̂y2 ¼

�
�i!M � �2

2

�
d̂y2 þ iG2b̂� ffiffiffiffiffiffi

�2

p
d̂y2;in;

(6)

where d̂i;in, b̂in describes operator-valued white noise driv-
ing the cavity and mechanical modes, and we have taken
the good-cavity limit !M � � (allowing us to drop terms

due to ĤCR). Equations (6) are readily solved to find the
steady-state occupancy and correlation of the Bogoliubov
modes. In the following analytic expressions, we take
�1 ¼ �2 for simplicity and focus on the good-cavity limit

(though Fig. 2 includes corrections due to ĤCR).
Imagine first that the optomechanical interactions van-

ished, i.e., Ĥint ¼ 0, and consider the behavior of �̂A, �̂B

(defined for a fixed r > 0). Even at zero temperature, �̂A

and �̂B will have a nonzero occupancy: the Bogoliubov
transformation of Eq. (4) implies that vacuum noise driving

the cavities acts as effective thermal noise for �̂A, �̂B.

Writing these intrinsic (Ĥint ¼ 0) occupancies as

h�̂y
j �̂ji0 ¼ �nth;j we have

�n th;A=B ¼ �nth;1=2cosh
2rþ ð �nth;2=1 þ 1Þsinh2r: (7)

Here, �nth;1 ( �nth;2) represents the temperature of the thermal

bath coupled to cavity 1 (2). As one increases the squeeze

parameter r, the effective heating of the �̂j modes becomes

exponentially large, implying the state of the system is far
from being an ideal two-mode squeezed vacuum state; the
state is not entangled.

Including now the effects of Hint [and taking r ¼
arctanhðG2=G1Þ], the dark-mode �̂B is unaffected, whereas

the occupancy of �̂A is modified to

h�̂y
A�̂Ai ¼ �

�opt þ �

�
1þ �opt

�þ �

�
�nth;A

þ �opt�

ð�opt þ �Þð�þ �Þ �nth;M; (8)

where �nth;M represents the temperature of the mechanical

bath (which includes the cooling cavity), and the effec-

tive ‘‘cold damping rate’’ of �̂A by the mechanics is

�opt � 4 ~G2=�. This is the familiar equation for cavity

cooling in the good-cavity limit, where now the mechanics
plays the role of a cold reservoir. For �nth;M ¼ 0 and weak

coupling (�opt � �), the �̂A mode is cooled by a factor

�=ð�þ �optÞ. In the strong coupling limit, the cooling

factor saturates to a value �=ð�þ �Þ.
Thus, while even vacuum noise tends to heat �̂A, �̂B to

an exponentially large effective temperature, the optome-

chanical interaction of Eq. (5) can be used to cool �̂A.
Using the inequality of Duan et al. [31], one can show that

if one cools �̂A so that

h�̂y
A�̂Ai � sinh2r; (9)

then the two cavities must necessarily be entangled
(see the Supplemental Material [26]). As the orthogonal

Bogoluibov mode �̂B is decoupled from the mechanics, it
is not cooled, making it impossible to achieve an ideal
two-mode squeezed vacuum state. Nonetheless, we find

that simply cooling �̂A is sufficient to generate a steady
state with significant entanglement (EN � 2r� ln2 in the
large r limit); this is despite the fact that the resulting state
has negligible overlap with a two-mode squeezed vacuum
(see the Supplemental Material [26]).
To rigorously quantify the cavity-cavity entanglement,

we compute and discuss in what follows the log negativity

FIG. 2 (color online). Stationary intracavity entanglement
(as quantified by log negativity EN , left scale) as a function of
the entangling interaction G2. We take �nth;1 ¼ �nth;2 ¼ 0, a

mechanical frequency of !M ¼ 2�	 10 MHz, damping � ¼
2�	 0:8 MHz, and do not make the rotating wave approxima-
tion. The solid red thin curve corresponds to a fixed value of
G1 ¼ 2�	 2 MHz, and �1 ¼ �2 ¼ 2�	 50 kHz. One clearly
sees a nonmonotonic dependence on G2. The solid blue thick
curve and short-dashed blue curve instead correspond to tuning
G1 to the value G

opt
1 for each G2, such that the dissipative

entangling mechanism can be optimized. The value of G
opt
1 �

G2 [cf. Eq. (10)] is indicated by the long-dashed brown curve
(right scale). The solid blue (dashed blue) curve corresponds to
�1 ¼ �2 ¼ 50 kHz (�1=2=2� ¼ 45 kHz, 55 kHz) and �nth;M ¼ 0

( �nth;M ¼ 0:3). The green dash-dotted line represents the maxi-

mum stationary entanglement achievable with a coherent two-
mode squeezing interaction EN ¼ ln2.
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EN , which is a function of the covariance matrix; details
are provided in the Supplemental Material [26].

Maximizing entanglement.—We now see that entangle-
ment generation is more subtle than one might expect
given the simple form of Eq. (2). In particular, if G1 is
fixed, the amount of stationary entanglement is a nonmo-
notonic function of the entangling-interaction strength
G2 (see Fig. 2). The dissipative entanglement mechanism
discussed here directly explains this behavior, as increas-
ing G2 has two opposing effects: it not only increases
r and the delocalization of the Bogoliubov modes (enhanc-
ing entanglement), but also increases the effective tem-
perature of these modes. This latter effect is due both to an
increase in the effective temperature of the cavity vacuum
noise [cf. Eq. (7)], and to a suppression of the cavity-

cooling effect (as the effective coupling ~G decreases with
increasing G2).

The maximum entanglement is achieved by carefully
balancing the opposing tendencies described above; with-
out this optimization, the entanglement will remain small.
For fixed couplings G1, G2, one can optimize the entangle-
ment as a function of the mechanical damping �. The
maximum occurs at a nonzero dissipation strength, which
at zero mechanical temperature and in the good-cavity

limit is simply given by � ¼ 2 ~G. This value simply mini-

mizes the occupancy of �̂A, and corresponds to a simple
impedance matching condition (i.e., the rate with which

the �̂A mode and mechanics exchange energy matches the
rate at which the mechanics and its bath exchange energy).

More relevant to experiment is to consider � and � fixed,
and optimize the entanglement over coupling strength.
Focusing on the most interesting regime where the
cooperativity C2 � G2

2=ð��Þ � 1, and considering the
good-cavity limit and zero temperature (the mechanical
resonator is also cooled to vacuum by the third cavity
mode), we find that for fixedG2, the optimalG1 is given by

G
opt
1 
 G2 þ

ffiffiffiffiffiffiffi
��

8

r �
1þ 2�

�

�
; i:e:;

~Gopt

�



�
C2�

2

2�2

�
1=4

:

(10)

Note that for large C2, this optimal value can easily corre-

spond to a strong interaction ~G> �, �. Thus, in this
optimal regime, the effects of our ‘‘engineered reservoir’’
(cold mechanical resonator) on the target cavity modes
cannot be described by a Markovian dissipator in a master
equation; this is in stark contrast to standard dissipation-
by-entanglement schemes.

For the optimal value of G1 above, the entanglement
takes simple forms in two relevant limits. If we hold C2

fixed while taking the limit �=� ! 1, we have (at zero
temperature)

E
opt
N 
 1

2
ln½2C2� ¼ 2r� 2 ln2: (11)

For large C2, the entanglement is almost that of a two-
mode squeezed vacuum (i.e., EN ¼ 2r). Alternatively, we
could hold the ratio �=� fixed and let C2 ! 1; we have
(at zero temperature)

Eopt
N � ln

�
2þ �

�
þO

�ð�=�Þ2ffiffiffiffiffiffi
C2

p
��

: (12)

This is the strong-interaction limit, where the �̂A mode
hybridizes with the mechanical resonator. The maximal

cooling of �̂A is consequently set by the ratio �=�
[cf. Eq. (8)]. The amount of entanglement here increases
monotonically from ln2 (the maximum possible with a
coherent coupling) as this cooling factor is increased.
The behavior of the stationary entanglement versus

coupling strength is shown in Fig. 2, where we have
used parameters similar to those achieved in recent state-
of-the-art experiments on microwave-circuit optomechan-
ical systems [1,5]. We assume that a !M ¼ 10 MHz
mechanical resonator is first cavity cooled to near its
ground state, with a final damping rate of � ¼ 0:8 MHz
(which is predominantly due to the cold optical damping
used for the cooling). By then optimally tuning the cou-
plings to the target modes G1, G2 to optimize the dissipa-
tive entanglement mechanism (while keeping them
& 2:2 MHz), one can obtain a relatively large EN � 2:1.
This exceeds by an order-of-magnitude the intracavity
entanglement obtained in previous studies of the same
system [12], as well as the maximum of ln2 possible
with a coherent two-mode squeezing interaction. If this
entanglement was used for a teleportation experiment,
the maximum possible fidelity would be 0.89 [32,33];
this reduces the error by a factor of 3 compared to what
would be possible with EN ¼ ln2. Figure 2 also shows that
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FIG. 3 (color online). Intracavity stationary entanglement
(quantified by EN) versus cooperativity C2, where we use an
optimized choice for G1 [as given by Eq. (10)], and have taken
�1 ¼ �2 and zero temperature. The solid lines correspond to
different choices of the damping ratio �=� as indicated; increas-
ing �=� increases the amount that one can cool the delocalized
�̂A mode, and hence enhances entanglement. For large C2, these
curves asymptote to the value in Eq. (12). The dashed blue line is
the asymptotic expression of Eq. (11). The green dashed-dotted
line indicates EN ¼ ln2 (the maximum EN possible with a two-
mode squeezing interaction).
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large values of EN are possible even when �nth;M � 0 and

�1 � �2.
In Fig. 3 we show how the stationary entanglement

grows to dramatically large values with C2 for an opti-
mized choice of G1. While the parameters needed for such
EN may be out of reach in current-generation optome-
chanics experiments, they may be more feasible by imple-
menting a superconducting circuit realization of our
scheme [14,15].

Conclusions.—We have presented a general method for
the dissipative generation of entanglement in a three-mode
optomechanical system. The entanglement generated here
could be verified by measuring the covariance matrix of
the two target cavity modes using homodyne techniques
(see, e.g., Ref. [11]). Alternatively, one could directly
use the cavity output spectra at resonance to measure the

occupancy of the �̂A mode; verifying that it violates the
Duan inequality of Eq. (9) would also confirm the genera-
tion of entanglement (see the Supplemental Material [26]).
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