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We study the dependence of 4D SUðNÞ gauge theories on the topological � term at finite temperature T.

We exploit the lattice formulation of the theory, presenting numerical results for the expansion of the free

energy up to Oð�6Þ, for N ¼ 3 and N ¼ 6. Our analysis shows that the � dependence drastically changes

across the deconfinement transition: the low-T phase is characterized by a large-N scaling with �=N as

relevant variable, while in the high-T phase the scaling variable is just � and the free energy is essentially

determined by the instanton-gas approximation.
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Important physical issues of strong interactions are
related to the nontrivial dependence of 4D SUðNÞ gauge
theories on the topological parameter �, which appears in
the Euclidean Lagrangian as
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is the topological charge density. The presence of a non-
zero � would break both parity and time reversal and the
experimental upper bound on it is very small, j�j< 10�9

[1]. Nevertheless, the issue of � dependence is interesting
and relevant to hadron phenomenology, an example being
the so-called Uð1ÞA problem. In the framework of the
large-N expansion [2–4], the nontrivial � dependence pro-
vides an explanation to the fact that the Uð1ÞA symmetry of
the classical theory is not realized in the hadron spectrum
(see, e.g., Refs. [5,6] for recent reviews).

In this Letter we investigate the topological properties
and the � dependence of 4D SUðNÞ gauge theories at finite
temperature T, in particular, across the deconfining
temperature Tc. Such properties are known to be relevant
to the thermodynamic behavior of hadronic matter. For
example, the effective restoration of the Uð1ÞA symmetry
in strong interactions at finite T, and, in particular, around
the chiral transition, is relevant to the nature of the tran-
sition itself [5,7,8].

As we shall better discuss in the following, one expects,
on general grounds, a crossover between a low-T and a
high-T regime for � dependence, characterized by different
large-N scalings. In particular, the high-T regime should be
describable by a semiclassical instanton gas picture, which
instead fails in the low-T regime, where �=N turns out to
be the relevant large-N scaling variable. In 4D SUðNÞ
gauge theories the deconfining transition is first order for
N � 3 and gets stronger as N increases. It is therefore

reasonable to conjecture that the � dependence may
sharply change right around Tc, where one may expect a
singular behavior, such as a discontinuity.
The purpose of our study is to investigate such a scenario

numerically, presenting results for N ¼ 3 and N ¼ 6 to
check the N dependence around the deconfinement tran-
sition. The lowest order Oð�2Þ contribution to the free
energy, involving just the topological susceptibility, has
been already investigated around the deconfinement
transition [9–12]. However, as we shall discuss in detail
later on, the study of higher order terms provides a more
stringent and definite signature for the change of the �
dependence between the two phases. Such a study is the
main subject of our investigation.
The finite-T behavior is specified by the free energy

Fð�; TÞ ¼ � 1

V
ln
Z
½dA� exp

�
�
Z 1=T

0
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Z
d3xL�

�
; (3)

where T is the temperature, V ¼ V=T is the Euclidean
space-time volume, and the gluon field satisfies
A�ð1=T;xÞ ¼ A�ð0;xÞ. The � dependence can be parame-

trized as

F ð�; TÞ � Fð�; TÞ � Fð0; TÞ ¼ 1
2�ðTÞ�2sð�; TÞ; (4)

where �ðTÞ is the topological susceptibility at � ¼ 0,

� ¼
Z

d4xhqðxÞqð0Þi�¼0 ¼ hQ2i�¼0

V
; (5)

and sð�; TÞ is a dimensionless even function of � such that
sð0; TÞ ¼ 1. Assuming analyticity at � ¼ 0, sð�; TÞ can be
expanded as

sð�; TÞ ¼ 1þ b2ðTÞ�2 þ b4ðTÞ�4 þ � � � ; (6)

where only even powers of � appear.
At zero temperature, where the free energy coincides

with the ground-state energy, large-N scaling arguments
[2,13] applied to the Lagrangian (1) indicate that the
relevant scaling variable [14] is �� � �=N, i.e.,

PRL 110, 252003 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
21 JUNE 2013

0031-9007=13=110(25)=252003(5) 252003-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.252003


F ð�Þ � N2Gð ��Þ (7)

as N ! 1. Comparing with Eq. (4), this implies the
large-N behavior

� ¼ �1 þOðN�2Þ; b2j ¼ OðN�2jÞ: (8)

We recall that a nonzero value of �1 is essential to provide
an explanation to the Uð1ÞA problem in the large-N limit
[3,4]. The apparent incompatibility of Eq. (7) with the
periodic nature of the topological � term may be solved by
a nonanalytic multibranched � dependence of the ground-
state energy [13,15], Fð�Þ¼N2minkHð�þ2�k=NÞ. The
large-N scaling (7) of the � dependence is fully supported
by numerical computations exploiting the nonperturbative
Wilson lattice formulation of the 4D SUðNÞ gauge theory
at T ¼ 0, see, e.g., the results reported in Table I forN ¼ 3,
4, 6 (see also Refs. [5,6] for recent reviews). This scenario
is expected to remain stable against sufficiently low
temperatures.

The large-N scaling (7) is not realized by the dilute
instanton gas approximation. Indeed, at zero temperature,
instanton calculations fail due to the fact that large instan-
tons do not get suppressed. On the other hand, temperature
acts as an infrared regulator, so that the instanton-gas
partition function is expected to provide an effective
approximation of finite-T SUðNÞ gauge theories at high
temperature [21], high enough to make the overlap
between instantons negligible. The corresponding � depen-
dence is [21,22]

F ð�; TÞ � �ðTÞð1� cos�Þ; (9)

�ðTÞ � T4 exp½�8�2=g2ðTÞ� � T�ð11=3ÞNþ4; (10)

using 8�2=g2ðTÞ � ð11=3ÞN lnðT=�Þ þOðlnlnT=ln2TÞ.
Therefore, the high-T � dependence substantially differs
from that at T ¼ 0: the relevant variable for the instanton
gas is just �, and not �=N. The instanton-gas approxima-
tion also shows that �ðTÞ, and therefore the instanton
density, gets exponentially suppressed in the large-N
regime, thus suggesting a rapid decrease of the topological
activity with increasing N at high T. Since the instanton
density gets rapidly suppressed in the large-N limit, mak-
ing the probability of instanton overlap negligible, the
range of validity of the instanton-gas approximation is
expected to rapidly extend toward smaller and smaller
temperatures with increasing N.

The low-T and high-T phases are separated by a first-
order deconfinement transition which becomes stronger
with increasing N [23], with Tc converging to a finite
large-N limit [24]. This suggests the following scenario:
the crossover between the low-T large-N scaling �
dependence and the high-T instanton-gas � dependence,
respectively given by Eqs. (7) and (9), occurs around the
deconfinement transition, and becomes sharper and sharper

with increasing N. See, e.g., Refs. [11,25–27] for further
discussions of this scenario.
It is important, at this point, to stress the following: even

if the instanton-gas prediction, Eq. (9), receives significant
corrections as one approaches Tc from above, one can still
conjecture that the phase transition sharply delimits two
regimes with a different large-N scaling behavior, i.e., that
the free energy is a function of �=N in the confined phase
and a function of � in the deconfined phase. This conjec-
ture is of course more general than the instanton gas picture
itself.
The finite-T lattice investigations of the large-N

behavior of �ðTÞ [11,12] indicate a nonvanishing large-N
limit for T < Tc, remaining substantially unchanged in the
low-T phase, from T ¼ 0 up to Tc. Across Tc a sharp
change is observed, and �ðTÞ appears largely suppressed
in the high-T phase T > Tc, in qualitative agreement with a
high-T scenario based on the instanton-gas approximation.
However, to achieve a more stringent check of the actual

scenario realized in 4D SUðNÞ gauge theories, we consider
the higher-order terms of the expansion (6), which provide
further significant information on the � dependence.
Indeed, the expansion coefficients b2j are expected to scale

like N�2j if the free energy is a function of �=N and to be
N-independent in the instanton-gas approximation. The
finite-T behavior of such coefficients has never been
studied numerically until now and is the subject of our
investigation. In particular, the simple � dependence of
Eq. (9) may be observed at much smaller T above Tc

with respect to the asymptotic one-loop behavior (10) of
�ðTÞ which is subject to logarithmic corrections.
In particular, we aim at clarifying (i) whether a sharp

change in the large-N scaling of b2j is observed across Tc,

signalling a change from a �=N to a � dependence of the
free energy, and (ii) how rapidly the values of b2j above Tc

converge to the instanton gas prediction, Eq. (9), i.e.,

b2j ¼ ð�1Þj 2

ð2jþ 2Þ! ; j ¼ 1; 2; . . . ; (11)

for the expansion (6). These predictions should be com-
pared to the T ¼ 0 estimates summarized in Table I. It has
to be stressed that the results (11) depend just on the

TABLE I. Summary of known T ¼ 0 results for the ratio �=�2

(where � is the string tension) and the first coefficients b2j for

N ¼ 3, 4, 6 [16]. The extrapolation of the results for �=�2, using
the simple ansatz aþ b=N2, gives �=�2 ¼ 0:022ð2Þ for N ! 1.
For more complete reviews of results see Refs. [5,6].

N �=�2 b2 b4

3 0.028(2) [5] �0:026ð3Þ [17–19] 0.000(1) [17]

4 0.0257(10) [20] �0:013ð7Þ [20]
6 0.0236(10) [20] �0:008ð4Þ 0.001(3)
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form (9) of the free energy and are independent of the
renormalized coupling constant gðTÞ.

Because of the nonperturbative nature of the physics of �
dependence, quantitative assessments of this issue have
largely focused on the lattice formulation of the theory,
using Monte Carlo (MC) simulations. However, the com-
plex character of the � term in the Euclidean QCD
Lagrangian prohibits a direct MC simulation at � � 0.
Information on the � dependence of physically relevant
quantities, such as the ground state energy and the spec-
trum, can be obtained by computing the coefficients of the
corresponding expansion around � ¼ 0.

We mention that issues related to � dependence, par-
ticularly in the large-N limit, can also be addressed
by other approaches, such as AdS/CFT correspondence
applied to nonsupersymmetric and nonconformal theories,
see, e.g., Refs. [13,27–29], and semiclassical approxima-
tion of compactified gauge theories [30,31].

In order to check the change of � dependence across the
deconfinement transition, we numerically compute the
topological susceptibility and the first few coefficients of
the expansion (6) above Tc, for N ¼ 3 and N ¼ 6 to check
the N dependence. For this purpose we exploit the lattice
Wilson formulation of SUðNÞ gauge theories

SL ¼ �	

N

X
x;�>�

ReTr���ðxÞ; (12)

where ��� is the standard plaquette operator [32].

The coefficients of the expansion around � ¼ 0 can be
determined from appropriate zero-momentum correlation
functions of the topological charge density at � ¼ 0. These
are related to the moments of the � ¼ 0 probability distri-
bution PðQÞ of the topological charge Q and parameterize
the deviations of PðQÞ from a simple Gaussian behavior.
Indeed [33],

�l ¼ hQ2i
LtL

3
s

; b2 ¼ �hQ4i � 3hQ2i2
12hQ2i ; (13)

b4 ¼ hQ6i � 15hQ2ihQ4i þ 30hQ2i3
360hQ2i ; (14)

where �l is the lattice topological susceptibility
(�l � a4�; a is the lattice spacing). The correlation
functions involving multiple zero-momentum insertions
of the topological charge density can be defined in a non-
ambiguous, regularization independent way [34], and,
therefore, the expansion coefficients b2i are well-defined
renormalization-group invariant quantities. This implies
that they approach their continuum limit with Oða2Þ
corrections.

We evaluate the above quantities in MC simulations for
several values of the coupling 	 on asymmetric Lt � L3

s

lattices [35]. Accurate estimates of b2j require huge

statistics, because of the large cancellations when eval-
uated from the expectation values of powers of Q, as in
Eq. (13). Therefore, we have to consider a relatively fast
method to estimate the topological charge Q of a lattice
configuration. We choose the cooling method, and in
particular the implementation outlined in Ref. [20]. The
stability of the results under cooling is carefully checked;
we take our data after 15 cooling steps, but differences with
the results after 10 and 20 cooling steps remain always
within the errors reported [36]. Moreover, the stability
substantially improves with increasing N, as already noted
in the literature, also by detailed comparisons with the
more rigorous overlap method (which is much more
demanding numerically), see, e.g., Ref. [5].
A summary of the results for N ¼ 3 and N ¼ 6 is

presented in Tables II and III, respectively [38]. The aspect
ratio Ls=Lt in our MC simulations is sufficiently large to
give rise to infinite-volume results for the observables
considered within the statistical errors, as shown by the
comparison of results for different values of Ls. For the
case of both SU(3) and SU(6) we check the continuum
limit by comparing the results obtained by using two
lattices of different temporal extent at the largest value of
T, see Tables II and III.
The MC results clearly show a change of regime in the �

dependence, from a low-T phase where the susceptibility
and the coefficients of the � expansion vary very little, to a
high-T phase where the coefficients b2j approach the

instanton-gas predictions. Figure 1 shows the data for b2.
In the high-T phase they are definitely not consistent with
the scaling (8), which would imply a factor of four in b2, in
going from N ¼ 3 to N ¼ 6. On the other hand, in the
low-T phase b2 does not significantly differ from the T ¼ 0
value. This is consistent with the behaviour of �l at N ¼ 3,
for which we obtain: �lðT¼0:95TcÞ=�lðT¼0Þ¼0:98ð1Þ
(at 	 ¼ 6:173). A similar behavior is observed for N ¼
6: �lðT ¼ 0:97TcÞ=�lðT ¼ 0Þ ¼ 1:00ð2Þ (at 	 ¼ 24:797).
Although our MC results in the high-T phase are

obtained for relatively small reduced temperatures
t � T=Tc � 1, i.e., t < 0:2, the data for b2 show a clear
and rapid approach to the value b2 ¼ �1=12 of the instan-
ton gas model for both N ¼ 3 and N ¼ 6, with significant
deviations visible only for t & 0:1. The high-T values of b2
substantially differ from those of the low-T phase, and, in
particular, from those at T ¼ 0 reported in Table I. Also
the estimates of b4 are consistent with the small value
b4 ¼ 1=360.
Our data confirm that � rapidly decays with increasing t

in both N ¼ 3, 6 cases. In particular for N ¼ 6 we obtain
�lðT ¼ 1:09TcÞ=�lðT ¼ 0Þ ¼ 0:0136ð4Þ (at 	 ¼ 25:056).
This suppression is in qualitative agreement with the one-
loop instanton-gas result (10), but larger temperatures are
required for a reliable quantitative comparison, essentially
because of the logarithmic corrections to Eq. (10). The
sharp behavior of the � dependence at the phase transition
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suggests that Tc is actually a function of �=N, as put
forward in Ref. [39].

We have tried to understand the deviations for b2, visible
at t & 0:1, by taking into account corrections to the
instanton-gas formula (9) through a virial-like expansion:
the asymptotic formula is corrected by a term proportional
to the square of the instanton density. For example, we may
write

F ð�; TÞ � �ð1� cos�Þ þ �2
ð�Þ þOð�3Þ; (15)

where we use the fact that �ðTÞ is proportional to the
instanton density, and 
ð�Þ can be parametrized as

ð�Þ ¼ P

k¼2c2k sinð�=2Þ2k. The above formula gives

b2 ¼ � 1

12
þ 1

8
c4

�

T4
c

þO

�
�2

T8
c

�
: (16)

If � gets rapidly suppressed in the high-T phase, as
suggested by Eq. (10) and confirmed by the MC results,
Eq. (16) would imply a rapid approach to the asymptotic
value of the perfect instanton gas, as shown by the data, see
Fig. 1. Assuming c4 weakly dependent on N, Eq. (16)
predicts an exponentially faster convergence with increas-
ingN, as also supported by the data. Moreover, a hard-core
approximation of the instanton interactions [22] gives rise
to a negative correction, i.e., c4 < 0, explaining the
approach from below to the perfect instanton-gas value
b2 ¼ �1=12.
In conclusion, our numerical analysis provides strong

evidence that the � dependence of 4D SUðNÞ gauge theory
experiences a drastic change across the deconfinement
transition, from a low-T phase characterized by a large-N
scaling with �=N as relevant variable, to a high-T phase
where this scaling is lost and the free energy is essentially
determined by the instanton-gas approximation, which
implies an analytic and periodic � dependence. The corre-
sponding crossover around the transition becomes sharper
with increasing N (see Fig. 1), suggesting that the perfect
instanton-gas regime sets in just above Tc at large N, while
�ðTÞ gets drastically suppressed. A virial-like expansion
suggests that the approach is exponential in N; this issue
deserves further investigation.
It is interesting to remark that hints for an early onset of

an instanton gas regime above the chiral-deconfinement
transition have been provided by recent MC simulations of

TABLE III. N ¼ 6 results. We report the same quantities as in Table II [37].

	 Lt, Ls t 105�l 103�=T4
c �12b2 360b4

24.797 6, 24 �0:032ð10Þ 17.14(16) 195(8) 0.07(34) �14ð18Þ
24.912 6, 24 0.045(14) 0.622(13) 9.6(5) 1.15(8) 2.2(1.8)

24.912 6, 20 0.045(14) 0.631(16) 9.8(6) 1.17(8) 2.2(0.7)

25.056 6, 24 0.089(8) 0.132(3) 2.41(9) 1.02(4) 1.0(2)

24.768 5, 20 0.141(7) 0.121(3) 1.28(4) 1.02(2) 1.0(1)

25.200 6, 24 0.160(8) 0.0316(12) 0.74(3) 1.02(4) 1.1(1)

TABLE II. N ¼ 3 results. We report the value of lattice coupling 	, the temporal (Lt) and
spatial (Ls) size of the lattice, the reduced temperature t � T=Tc � 1 [37], �l, �=T

4
c and the first

two coefficients b2 and b4 of the expansion (6).

	 Lt, Ls t 105�l 10�=T4
c �12b2 360b4

6.173 10, 40 �0:053ð3Þ 2.292(7) 1.84(2) 0.37(12) �4ð11Þ
6.241 10, 40 0.045(3) 0.645(3) 0.77(1) 1.27(7) 0.7(1.8)

6.273 10, 40 0.095(4) 0.375(3) 0.54(1) 1.15(7) 1.4(1.4)

6.305 10, 40 0.145(6) 0.232(2) 0.40(1) 1.02(5) 3.6(7.2)

6.305 10, 30 0.145(6) 0.233(3) 0.40(1) 1.10(7) 2.9(1.4)

6.437 12, 48 0.147(13) 0.103(3) 0.37(2) 1.07(14) �1:1ð1:4Þ

-0.05 0 0.05 0.1 0.15

t

-0.125

-0.1

-0.075

-0.05

-0.025

0

b2

T=0, N=3

instanton gas

T=0, N=6 N=3, Lt=10
N=3, Lt=12
N=6, Lt=6
N=6, Lt=5

FIG. 1 (color online). Finite-T results of b2 for N ¼ 3 and
N ¼ 6, versus the reduced temperature t � T=Tc � 1. The shad-
owed regions indicate the T ¼ 0 estimates of b2 for N ¼ 3 and
N ¼ 6; see Table I.
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full QCD, by looking at the behavior of the relevant
susceptibilities [40].

A large part of the MC simulations was performed at the
INFN Pisa GRID DATA center, using also the cluster
CSN4, for a total amount of about 600 years of CPU
time. H. P. would like to thank the Research Promotion
Foundation of Cyprus for support, and INFN, Sezione di
Pisa, for the kind hospitality. We thank Francesco Bigazzi
and Ariel Zhitnitsky for enlightening discussions. C. B. and
M.D. thank the Galileo Galilei Institute for Theoretical
Physics for the hospitality offered during the workshop
‘‘New Frontiers in Lattice Gauge Theories.’’
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