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Scattering amplitudes at loop level can be expressed in terms of Feynman integrals. The latter satisfy
partial differential equations in the kinematical variables. We argue that a good choice of basis for (multi)
loop integrals can lead to significant simplifications of the differential equations, and propose criteria for

finding an optimal basis. This builds on experience obtained in supersymmetric field theories that can be

applied successfully to generic quantum field theory integrals. It involves studying leading singularities
and explicit integral representations. When the differential equations are cast into canonical form, their
solution becomes elementary. The class of functions involved is easily identified, and the solution can be
written down to any desired order in € within dimensional regularization. Results obtained in this way are

particularly simple and compact. In this Letter, we outline the general ideas of the method and apply them

to a two-loop example.
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Introduction and summary.—Scattering amplitudes are
of fundamental interest in quantum field theory, as they
connect theory to (collider) experiments. A theoretical
challenge is to describe events with many jets, as well
as to increase the precision of the predictions by going
beyond leading and next-to-leading order accuracy,
see [1] for a recent discussion.

Computing scattering amplitudes usually consists of
two steps. The first is to find an expression in terms of
(Feynman) loop integrals, and the second is to evaluate the
latter. In supersymmetric theories, the first step is essen-
tially solved by virtue of (generalized) unitarity or recur-
sion relations [2—4], where the idea is to reconstruct the
loop integrand from its analytic behavior, in particular
factorization on propagator poles. In developing these
ideas, the maximally supersymmetric Yang-Mills theory
was instrumental. What can we learn from recent advances
in this theory at loop level?

Although many impressive perturbative results are
available, unfortunately the methods used to obtain them
cannot be applied directly to generic scattering amplitudes.
The reason is that most of them relied in some aspect on
the duality between scattering amplitudes and Wilson
loops specific to that theory. Nonetheless, these advances
suggest to us that there should also be easier ways to
directly carry out the Feynman integrations. Progress in
this direction commenced with a better understanding of
loop integrands. It was observed that new representations
for the latter [4,5] lead to simple analytic answers [6,7], as
a consequence of differential equations they satisfy [8].
Moreover, mathematics for iterated integrals [9—11] furth-
ered the understanding of the transcendental functions
involved.

In this Letter, we apply these ideas to the evaluation of
generic loop integrals in dimensional regularization, and
combine them with state-of-the-art techniques of QCD.
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Our method applies to planar or nonplanar, massless or
massive integrals equally.

As we review shortly, the calculation of an arbitrary loop
integral can always be related to the calculation of a finite
set of master integrals. The question we wish to address
here is how to choose a ‘good’ set of master integrals.

One key idea is that we would like loop integrals to have
simple properties under the action of differential operators.
In order to define what is meant by simple, let us introduce
the concept of degree of transcendentality 7 (f) of a
function f, which applies to a large class of iterated inte-
grals [9,10]. T (f) is defined as the number of iterated
integrals needed to define the function f, e.g., T (log) =
1, T(Li,) = n, etc. We also have T (f,f,) = T (f,) +
T (f,). Constants obtained at special values are also
assigned transcendentality, e.g., 7 (£,) = n. Algebraic fac-
tors have degree zero. Functions that we will be interested
in have uniform (degree of) transcendentality; i.e., if fis a
sum of terms, all summands have the same degree.

Moreover, we call such functions pure if their degree of
transcendentality is lowered by taking a derivative, i.e.,
T (df) = T(f) — 1. This implies that the transcendental
functions in f cannot be multiplied by algebraic coeffi-
cients, which would otherwise be ‘seen’ by the differential
operators.

There are several guiding principles that can help to find
such integrals. Although to the best of our knowledge there
is no general proof, it has been observed that integrals
having constant leading singularities [5,12] have these
properties. The latter are defined by analytically continuing
the momenta to complex values, and replacing the integra-
tion over space-time by contour integrals around poles of
the integrand. Another way the properties discussed above
can be made manifest is when an appropriate “‘d-log”
representation is available [13], where the integrand is
written as a logarithmic differential form. This approach
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works particularly well for Wilson loop integrals. Finally,
we have also found explicit representations based on
Feynman parameters to be useful.

One might think that few Feynman integrals have such
nice properties. In fact, as we argue here, quite the opposite
is the case. This claim is supported by many examples in
the literature. As a specific case in point, the above ideas
were employed in [14] to present massless planar and
nonplanar form factor integrals in a basis where each
integral has uniform transcendentality.

Having discussed these general ideas, let us return to the
issue of the reduction to master integrals and the calcula-
tion of the latter.

Feynman integrals can be classified according to their
topology, starting with the integrals where the maximal
number of propagators is present. The propagators,
labelled by i, are raised to powers a;. Subtopologies, where
certain propagators are absent, are obtained by setting the
corresponding indices a; to zero.

For each topology, there is a set of integration-by-parts
(IBP) identities [15] that relates integrals with different
values of the a;. These equations follow from the Poincaré
invariance of the integrals, which is preserved in dimen-
sional regularization. They are linear in the integrals, with
the coefficients being rational functions of the kinematical
invariants and the space-time dimension. In this way, one
can relate an integral with general integer powers to a finite
set of master, or basis integrals. In practice, a set of basis
integrals can be found straightforwardly by using various
public computer codes [16]. For a recent review and more
details and references, see [17].

Having reduced the general problem in this way, one
would then like to compute the basis integrals. From the
discussion above it should not be surprising that we will
use the method of differential equations [18-21]. The idea
is to differentiate with respect to the kinematical invariants.
This can be implemented on the Feynman integrals by
defining appropriate derivatives with respect to the mo-
menta (respecting momentum conservation and on-shell
conditions.) The rhs of such an equation involves integrals
of the same topology, but with different powers a;. The
latter integrals can then be reexpressed via the IBP rela-
tions in terms of the chosen basis integrals. So in general,
we obtain a set of linear, first-order partial differential
equations for the basis integrals.

Denoting the kinematical variables by x;, the set of N
basis integrals by f;, and working in D = 4 — 2€ dimen-
sions, this set of equations takes the form

Inf (€ x,) = Ay(€ x,)f (€ x,), ()

where d,, = d/dx,,, and each A,, is an N X N matrix. The
matrices have to satisfy the integrability conditions (except
possibly for special singular values of the x,,),

0,Ay — 0,A, + [An: Am] =0, 2)
where [A, B] := AB — BA.

In order to completely specify the solution, one has to
provide a boundary condition. In general, this can be done
by studying physical limits of the scattering process under
consideration.

In practice, one would like to solve Eq. (1) in a Laurent
expansion around € = 0 [22].

Under a change of basis f — Bf, the matrices A,, trans-
form as

A, — B'A,,B — B~ (3,,B). 3)

Note that here B can be in principle any N X N matrix,
where each entry is a function of € and of the kinematical
variables x,,.

Equation (1) can simplify considerably when a good
choice of basis is made. Our conjecture is that an optimal
choice of integral basis f; can be reached, where the
integration of the system of differential equations becomes
trivial, in the sense explained below.

One could imagine several simplified versions of
Eq. (1). We studied various cases of practical interest,
and based on that evidence we propose that one can trans-
form Eq. (1) into the following form,

Inf(€ x,) = €A, (x,)f (€ x,). )

We remark that in this case, the integrality condition (2)
becomes

9, An — A, =0, [An’ Am] = 0. (5)
For the discussion of the properties of the solution it is

convenient to combine Egs. (4) and write them in differ-
ential form,

df(er -xn) = GdA(xn)f(E’ xn)- (6)

We may also note that one can formally solve Eq. (6) in
terms of a path-ordered exponential,

£=PeLe¥g(e), )

where the integration contour C connects the base point
(representing the boundary condition) to x,. In other
words, the perturbative solution in € is given by iterated
integrals, where the entries of dA determine the integration
kernels.

We stress that once a form (4), or equivalently (6),
is reached, then the problem of solving for the master
integrals f; in the € expansion is essentially solved.

The form (6) of the equations can also make the tran-
scendentality properties of the solution manifest. In order
to see this, let us introduce one new concept. In dimen-
sional regularization, it is customary to assign degree
of transcendentality —1 to €. In this way, one can discuss
the transcendentality properties of functions appearing
in the Laurent expansion of e-dependent expressions.
For example, in x¢ = 1 + elogx + O(€?) each summand
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has the same degree of transcendentality, namely zero.
Then, if dA in (6) is a logarithmic one-form, it is clear
that the answer will have uniform transcendentality, to all
perturbative orders in €.

Along the same lines, one can immediately determine
from Eq. (6) which class of functions the solution will be
expressed in. This is best discussed using the notion of
symbol of a transcendental function [9—11]. The entries of
A in Eq. (6) determine the alphabet of the symbols of the
solution, again to all orders in €.

In principle, starting with a random basis of master
integrals f, one could attempt to find an appropriate set
of functions B in Eq. (3) in order to reach the canonical
form (4). However, this seems like a formidable task in
general, and for that reason the criteria outlined above are
very useful in practice.

In the remainder of this letter, we present a nontrivial
example of this method. A more detailed discussion, as
well as further applications, will be given elsewhere.

Planar two-loop master integrals for 2 — 2 scattering.—
We consider the planar double ladder integrals [21,23].
One can see via IBP that these constitute all loop integrals
for virtual corrections to massless 2 — 2 scattering, in any
gauge theory. We introduce the notation

dPk,dPk,
W [1tP@)], 8

m=1

I = 6257E

with the propagator P(q) := 1/(—¢?), and the set of pos-
sible momenta ¢,,, corresponding to m = 1, ...9, respec-
tively, is ki, ky + py, ki + pia, ki + pras, ko, ky + ppas
ky + pias, ki — ky where pj; = p; + pyand pjp; = p; +
p2 + p3. We have p7 =0 and 3% | p; = 0. The results
depend on the Mandelstam variables s = 2p; - p, and
t=2p; - ps.

There are 8 master integrals for this problem. We choose
the following basis, see Fig. 1,

1= —€ (=) tly200000,1.2 )]
Jr=€(=5)"1y05010002 (10)
f3=€=9)"1y 10010102 (11)
fa=—€(—5)*"L5 1020100 (12)
fs =€ (=)'l 11000012 (13)
fo=—€(=5)(s + Dly11010011 (14)
fr=—€ (="l 110101110 (15)
fs=—€ (=P 1011111 (16)

ORISE R ae

FIG. 1. Integral basis corresponding to f, ... f4 (first line) and
fs, ... fs (second line), up to overall factors. Fat dots indicate
doubled propagators, and the dotted line an inverse propagator.
The incoming momenta are labeled in a clockwise order, starting
with p; in the lower left corner.

Here the normalization was chosen such that all f; admit a
Taylor expansion in €. Moreover, they depend on s and ¢
through the dimensionless variable x = /s only. For this
choice of basis, we find

a b
O f=¢€l -+ : 17
st a7
with the constant matrices
/(2.0 0 0 0 0 0 0
o 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0
0 0 0 0 0 o0 o0 0
““1's 0 0o o -2 0 o of "
-1 0 0o o -2 0 0
-3 -3 0 0 4 12 -20
2 3 -3 -1 -4 —-18 1 1)
and
(O 0 0 0 O O 0 0
0o 0 0 0 0 0 0 O
0o 0 0 0 0 0 0 O
O 0 0 0 0 0 0 O
b=\ , (19)
-3 0 3 0 1 0 0 0
0o 0 0 0 0 2 0 0
3.6 6 2 —4 —-12 2 2
-3 =33 -1 4 18 -1 -1)

Equation (17) is a simple instance of the Knizhnik-
Zamolodchikov equations [24,25]. The three singular
points {0, —1, co} for x correspond to the physical limits
s=0,u=—s—1t=0,and t = 0, respectively.

Taking into account that the leading term in the €
expansion must be a constant, it follows from Eq. (17)
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that the result at any order in € can be written as a linear
combination of harmonic polylogarithms [26] of argument
x, with indices drawn from the set {0, —1}. In particular, the
symbol alphabet in this case is {x, 1 + x}. Finally, the
requirement that the planar integrals be finite at x = —1
and real valued for x positive turns out to fix all except
two boundary constants. The latter can be related to the
trivial propagator-type integrals f, and f4, which are
known in closed form. This completely solves this family
of Feynman integrals, to all orders in €. We see that all
basis elements f; have a uniform degree of transcenden-
tality, to all orders in €. One may verify agreement with
Ref. [23], to the order in € computed there.

Discussion and outlook.—In this Letter, we argued that a
good basis choice for master integrals can significantly
simplify the differential equations they satisfy. We moti-
vated and discussed guiding principles for choosing
good master integrals, based on their transcendentality
properties. The latter can be discussed through their lead-
ing singularities. We remark that the basis choice is not
unique.

We provided a nontrivial example at the two-loop level
[21,23]. These integrals can now be trivially obtained
to any order in €. All master integrals have a uniform
degree of transcendentality and are given by compact
expressions.

It would be interesting to find criteria for, or prove or
disprove the existence of a matrix B of Eq. (3) that leads
to (4). We would like to stress that beyond the example
given here, we found this method to apply to many further
cases of practical interest. In particular, we expect appli-
cations to previously unknown integrals involving top
quarks or Higgs particles, or to Bhabha scattering, to
name a few examples. Preliminary results also show that
the method can be applied successfully to integrals in
heavy quark effective theory.

In more complicated multileg processes, or processes
involving masses, the appropriate set of integral functions
may not yet be known. We anticipate that our method will
be a convenient way of solving this problem, and lead to
investigations of generalized functions appropriate for
those scattering processes. In this context, we also wish
to stress that the differential equations can first be trivially
solved in terms of symbols, and possible simplifications
identified, before the problem of finding a convenient
integral representation is addressed.

A further promising avenue of research is the systematic
investigation of leading singularities in D = Dy — 2e€
dimensions, where D, is some integer. In this context,
we would also like to point out that we found propagators
with doubled or higher powers useful in choosing
master integrals. We focused on expansions near four
dimensions, but one can apply our method in other dimen-
sions as well, where a different choice of basis may be
appropriate.
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