
Wigner Time-Delay Distribution in Chaotic Cavities and Freezing Transition

Christophe Texier1,2 and Satya N. Majumdar1
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Using the joint distribution for proper time delays of a chaotic cavity derived by Brouwer, Frahm, and

Beenakker [Phys. Rev. Lett. 78, 4737 (1997)], we obtain, in the limit of the large number of channels N,

the large deviation function for the distribution of the Wigner time delay (the sum of proper times) by a

Coulomb gas method. We show that the existence of a power law tail originates from narrow resonance

contributions, related to a (second order) freezing transition in the Coulomb gas.
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The study of scattering theory in chaotic or disordered
quantum systems within the random matrix theory (RMT)
has been a subject of intense research for many years.
Though it originated in nuclear physics (see the review
[1]), it has major implications in condensed matter theory
where it can be used to model electronic transport in
mesoscopic (coherent) conductors [2,3]. The dynamics of
an electron of energy E is described through theN � N on-
shell scattering matrix SðEÞ, where N is the number of
scattering channels. A useful concept that characterizes the
temporal aspects of the scattering process is time delay
[4,5] undergone by an incident wave packet. This is
captured by the Wigner-Smith time-delay matrix [6],
QðEÞ ¼ �iSðEÞy@SðEÞ=@E (with @ ¼ 1), whose eigen-
values are the proper time delays �1; . . . ; �N .

If the system is characterized by some complex dynam-
ics, due to the presence of disorder or chaos, the statistical
properties of the time delays exhibit interesting universal
characteristics: the universality of the time-delay distribu-
tion for 1D-disordered quantum mechanics was demon-
strated in [7] (see also [8–12] and [13] for 2D and 3D
cases). The situation where the dynamics is chaotic has
been extensively studied within RMT: the marginal law of
partial time delays [14], ~pNð�Þ ¼ ð1=NÞPah�ð�� ~�aÞi,
was obtained for a Gaussian unitary ensemble (GUE) of
RMT indexed by � ¼ 2 [15,16]. In [17], the time-delay
distribution was derived in the N ¼ 1 case with � 2
f1; 2; 4g, corresponding to orthogonal, unitary, and sym-
plectic symmetry classes. Using the ‘‘alternative RMT’’
introduced in [18], Brouwer and co-workers succeeded in
finding the joint distribution of the inverse proper time
delays �k � 1=�k (in the absence of tunable barriers at the
contacts) [19,20]:

Pð�1; . . . ; �NÞ /
Y
i<j

j�i � �jj�
Y
k

��N=2
k e���k=2 (1)

(the times are measured in units of the Heisenberg time
�H ¼ 2�@=�, where � is the mean level spacing). This
measure, known as the Laguerre ensemble of random
matrices, also corresponds to the distribution of the

(positive) eigenvalues of Wishart matrices XyX, where
the matrix X has size N � ð2N � 1þ 2=�Þ with indepen-
dent and identically distributed Gaussian matrix elements.
In this article we are interested in the Wigner time delay,

defined as the sum of proper (or partial) [14] time delays
�W ¼ TrfQg=N ¼ ð1=NÞPN

a¼1 �a. This quantity is of great
interest due to its close relation to the density of states
(DOS) of the open system, through the Krein-Friedel
relation [21]: �ðEÞ ¼ TrfQðEÞg=ð2�Þ ¼ N�W=ð2�Þ. The
Wigner time delay (or related quantities such as injectance
or emittance) is a central concept for studying charging
effects, e.g., for mesoscopic capacitances [17,22].
We denote by PNð�Þ ¼ h�ð�� ð1=NÞPa�aÞi theWigner

time-delay distribution. Despite the fact that the joint
distribution of proper times has been known already for
15 years, little is known about the distribution of �W
for general N: it has been computed explicitly only

for N ¼ 1, P1ð�Þ¼ ð�=2Þ�=2=�ð�=2Þ��2��=2e��=ð2�Þ

[17] and N ¼ 2, P2ð�Þ ¼ �3�þ2�ð3ð� þ 1Þ=2Þ=½�ð� þ
1Þ�ð3� þ 2Þ���3ð�þ1ÞUðð� þ 1Þ=2; 2ð� þ 1Þ;�=�Þe��=�

[24], where Uða; b; zÞ is the confluent hypergeometric
function. The distribution was conjectured to have a power

law tail for large �, PNð�Þ � ��2��N=2 in [16] (for � ¼ 2)
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FIG. 1 (color online). Sketch of the distribution of s ¼ N�W.
The dashed line at s ¼ sN ’ 1þ ð4=NÞ1=3 separates the two
phases of the Coulomb gas with densities represented in the
small figures on the left and the right, respectively.
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by using the resonance picture allowing one to identify the
tails of PNð�Þ and ~pNð�Þ (for a heuristic argument using the
relation to resonance width, cf. the review [25]). More
recently, the first three cumulants of �W were derived
by a generating function method [26]. However, a full
understanding of its distribution for general N is still
missing so far.

In this Letter, by analyzing an underlying Coulomb gas
we provide a complete description of PNð�Þ for largeN and
show that it has a rather rich behavior including an inter-
esting nonanalytic point which is a consequence of a
freezing transition in the Coulomb gas. Limiting behaviors
of PNð�Þ may be summarized as follows (�W is measured
in unit of �H):

PNð�Þ � ��3N2�=4e�N�=ð2�Þ for � � 1

N
; (2)

� exp�N4�

8

�
�� 1

N

�
2

for �� 1

N
; (3)

� N��N=2 exp�N3�

4

�
�� 2

N

�
2

for �� 2

N
; (4)

� ��2��N=2 for � � 1

N
: (5)

A sketch of the distribution is given in Fig. 1. The Gaussian
form around �� 1=N in (3) allows one to extract the mean
time delay and its variance. Reinstating �H, we obtain
h�Wi ¼ �H=N. Consequently, the mean DOS reads
h�ðEÞi ¼ Nh�Wi=ð2�Þ ¼ 1=�, as expected. Similarly, the
variance can be read off (3)

Var ð�WÞ ’ 4�2H
�N4

; i:e:; Varð�ðEÞÞ ’ 4

�N2�2
: (6)

Equation (6) was first obtained in [27] for � ¼ 1. It agrees
with the leading order of the result obtained in Ref. [26],
Varð�WÞ ¼ 4�2H=½ðN þ 1ÞðN�� 2ÞN2�. Note also that (5)
coincides with the power law tail conjectured by Fyodorov

and Sommers [16], PNð�Þ � ��2��N=2.
Coulomb gas.—To derive our main results (2)–(5), we

use the Coulomb gas method, originally introduced by
Dyson [28]. Recently, this method has been suitably
adopted and successfully used in a number of different
contexts: e.g., the distribution of the conductance of
chaotic cavities [29–31], or the quantum entanglement in
a random bipartite state [32–34]. Our starting point
is to rewrite the joint distribution (1) of the rescaled rates
xi ¼ �i=N as a Gibbs measure, Pð�1; . . . ; �NÞ /
expf��N2E½��=2g, with the ‘‘energy’’ E½�� expressed as
a functional of the density of the rescaled rates �ðxÞ ¼
ð1=NÞPN

i¼1 �ðx� xiÞ. The energy reads

E½�� ¼
Z 1

0
dxðx� lnxÞ�ðxÞ

�
Z 1

0
dxdx0�ðxÞ�ðx0Þ lnjx� x0j: (7)

The rescaled time delay is s ¼ N�W ¼ P
i�

�1
i (i.e., the

DOS of the cavity in appropriate units s ¼ �ðEÞ�). In the
limit N ! 1, the density �ðxÞ may be treated as continu-
ous and the distribution PNð� ¼ s=NÞ can be derived
via a saddle point method. The optimal (saddle point)
distribution minimizes (7) with two constraints: normal-
ization

R
dx�ðxÞ ¼ 1 and

R
dx�ðxÞ=x ¼ s. This requires

the minimization of the ‘‘free energy’’ F ½�� ¼
E½�� þ�0ð

R
dx�ðxÞ � 1Þ þ�1ð

R
dx�ðxÞ=x� sÞ, where

�0 and �1 are two Lagrange multipliers that enforce the
two constraints (we neglect the subdominant contribution
of entropy [35]). Setting the functional derivative
�F =��ðx0Þ ¼ 0 gives

�0þx0� lnx0þ�1

x0
�2

Z b

a
dx�ðxÞlnjx�x0j¼0; (8)

where we assume that the optimal density has support over
the interval x0 2 ½a; b�. Deriving once more with respect to
x0 gives

1

2

�
1� 1

x0
��1

x20

�
¼ ⨏ b

a
dx

�ðxÞ
x0 � x

; (9)

where ⨏ represents the principal part. This equation

expresses the force balance at equilibrium, for any charge
at x0 2 ½a; b�, between the confining force �V 0

effðxÞ com-

ing from the effective potential VeffðxÞ ¼ x� lnxþ�1=x
and the Coulomb repulsion force from other charges. We
denote by ��ðx; sÞ the solution of (9). The time-delay
distribution then takes the scaling form

PNð�Þ �
N!1 exp

�
� 1

2
�N2��ðN�Þ

�
; (10)

where the large deviation function is ��ðsÞ ¼
E½��ðx; sÞ� � E½��ðx; 1Þ� (note that when the two con-
straints are fulfilled, F ½��� ¼ E½���). The term
E½��ðx; 1Þ� emerges from the normalization of (1),
obtained by solving the same equation in the absence of
the second constraint, i.e., for�1 ¼ 0, which we will show
to coincide with s ¼ 1. Using (8), we may rewrite the
energy of the optimal distribution as

E ½��ðx;sÞ�¼�1

2

�
1

x0
�s

�
þ
Z b

a
dx��ðx;sÞ

�
�
x� lnxþx0� lnx0

2
� lnjx�x0j

�
: (11)

Optimal distribution.—The integral equation (9) may be
solved thanks to a theorem due to Tricomi [36]. We find the
optimal distribution
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��ðx; sÞ ¼ 1

2�

xþ c

x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� aÞðb� xÞp
; (12)

where the three parameters a, b, and c ¼ �1=
ffiffiffiffiffiffi
ab

p
can be

found by solving the three algebraic equations obtained by
imposing the vanishing of the density at the two boundaries
and the condition

R
b
a dx��ðx; sÞ=x ¼ s. These equations

are conveniently written in terms of the variables v ¼ffiffiffiffiffiffi
ab

p
and u ¼ ffiffiffiffiffiffiffiffiffi

a=b
p

. A few steps of algebra shows that u
solves

s ¼ 	ðuÞ ¼defð1� uÞ2 ð�u4 þ 16u3 þ 2u2 þ 16u� 1Þ
16u2ð3u2 � 2uþ 3Þ :

(13)

Then v, �1, and c are given by v ¼ 2uð3u2 � 2uþ 3Þ=
ð1� u2Þ2,�1¼�4u2ðu2�6uþ1Þð3u2�2uþ3Þ=ð1�u2Þ4,
and c ¼ �1=v ¼ �2uðu2 � 6uþ 1Þ=ð1� u2Þ2.

Most probable values.—We first analyze the distribution
PNð�Þ in the vicinity of its maximum. E½��ðx; sÞ� is mini-
mized, i.e., PNð�Þ is maximized, by removing the con-
straint

R
b
a dx�ðxÞ=x ¼ s, i.e., by setting �1 ¼ 0. For

convenience we introduce the roots x	 ¼ 3	 2
ffiffiffi
2

p
of the

polynomial u2 � 6uþ 1. For �1 ¼ 0, Eq. (13) has the

solution u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�=xþ

p ¼ x� with v ¼ 1 and s ¼ 1 and
consequently a ¼ x� ¼ 0:171 . . . and b ¼ xþ ¼
5:828 . . . In this case we recover the Marčenko-Pastur
(MP) law [37]

��ðx; 1Þ ¼ 1

2�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x�Þðxþ � xÞ

q
: (14)

Expansion of Eq. (13) around the MP point leads to

s� 1 ’ �xþðu� x�Þ=
ffiffiffi
2

p
, hence v ’ 1þ 3xþðu� x�Þ=

ð2 ffiffiffi
2

p Þ ’ 1� 3ðs� 1Þ=2 and c ’ �1 ’ �ðs� 1Þ=2. The
corresponding energy (11) may be conveniently obtained
by choosing x0 ¼ 1: we see that the first term is quadratic
ðs� 1Þ2=4; we check numerically that the remaining inte-
gral term is constant, equal to E½��ðx; 1Þ� ¼ 3� 2 ln2,
up to higher order corrections [numerical fit gives a cor-
rection ðs� 1Þ3=4]. Therefore we conclude that
��ðsÞ ’

s�1
ð1=4Þðs� 1Þ2, i.e., Eq. (3) [the parabolic behav-

ior is compared to the numerical calculation of the integral
(11) in Fig. 3].

Large deviations for s ! 0.—Expansion of (13) for

s ! 0 gives u¼1� ffiffiffiffiffi
2s

p þsþOðs3=2Þ, hence v ¼
1=sþOðs0Þ. The support of the distribution is given by

a ¼ ð1=sÞ½1� ffiffiffiffiffi
2s

p þOðsÞ� and b¼ð1=sÞ½1þ ffiffiffiffiffi
2s

p þ
OðsÞ� (the Lagrange multiplier is �1 ¼ s�2 þOðs�1Þ).
The optimal distribution resembles the semicircle law
centered around 1=s:

��ðx; sÞ ’
s!0

1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s� ðsx� 1Þ2

q
: (15)

This was expected: when s ! 0, the eigenvalues fxig of the
Wishart matrix are constrained to be very large and they do

not feel the spectrum boundary at x ¼ 0. Hence, their
distribution coincides with the Wigner semicircle law for
the usual Gaussian ensembles of random matrices. The
energy may be conveniently calculated by choosing x0 ¼
1=s; this makes the first term of (11) vanish. The leading
order of the integral term is straightforwardly cal-
culated from (15): we deduce ��ðsÞ ’

s!0
1=sþ ð3=2Þ lns�

5ð1� ln2Þ=2, thus proving (2). The factor exp�ðN�=2�Þ
is in perfect agreement with the exact results for N ¼ 1&2
mentioned earlier.
Large deviations for s 
 1 : Freezing transition.—As s

increases, it eventually reaches a finite value corresponding
to the maximum of the function 	ðuÞ (inset of Fig. 2),

at uc ¼ ½1þ 2ð21=3 � 22=3Þ�=3¼ 0:115 . . . giving sc ¼
	ðucÞ ¼ ½10þ 6� 21=3 � 11� 22=3�=½3ð6� 6� 21=3 þ
22=3Þ� ¼ 1:1738 . . . . Then a ¼ �c, which leads to a some-
what unusual form

��ðx; scÞ ¼ 1

2�x2
ðx� aÞ3=2ðb� xÞ1=2: (16)

For s > sc, (13) no longer has physical (real) solutions. In
this case, the saddle point turns out to have a different
solution where a single isolated charge, say at x1, splits off
the main body of the density and carries a macroscopic
weight (see Fig. 1). A similar scenario occurs in the
study of quantum entanglement in the random bipartite
state [32–34]. We decompose the density as �ðxÞ¼
ð1=NÞ�ðx�x1Þþ ~�ðxÞ where ~�ðxÞ ¼ ð1=NÞPi>1�ðx� xiÞ
is still treated as a continuous density. The energy

E ½�� ¼ E½~�� þ x1 � lnx1
N

� 2

N

Z
dx~�ðxÞ lnðx� x1Þ

(17)

must be minimized under the two constraints
R
dx~�ðxÞ ¼

1� 1=N and
R
dx~�ðxÞ=x ¼ s� 1=ðNx1Þ. This leads to the

two equilibrium conditions
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FIG. 2 (color online). The optimal density of eigenvalues for
different values of s; when s increases, the density eventually
freezes to the MP law (dashed line).
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1

2

�
1� 1

x0
��1

x20

�
� 1

N

1

x0 � x1
¼ ⨏ b

a
dx0

~�ðx0Þ
x0 � x0

(18)

1

2

�
1� 1

x1
��1

x21

�
¼

Z b

a
dx0

~�ðx0Þ
x1 � x0

; (19)

8 x0 2 ½a; b� and x1 < a. We now demonstrate that a
consistent scenario is the following: freezing of the density
~�ðxÞ while the isolated charge goes to zero x1 ! 0. When
N ! 1, the right-hand side of (19) reaches a constant
value as x1 ! 0; so does the left-hand side if and only if
�1 ’ �x1 ! 0�. Hence the solution of (18) is the MP law:
~��ðx; sÞ ¼ ��ðx; 1Þ þOðN�1Þ. The rescaled time delay
splits into the contribution of the isolated charge and of
~� as s ¼ 1=ðNx1Þ þ 1, i.e., x1 ¼ 1=½Nðs� 1Þ�. In fact this
analysis holds for any s > 1 (and not only s 
 sc): the
energy (17) of this new phase coincides with the energy
of the MP solution, up to 1=N corrections. Therefore, for
1< s � sc we have found another phase with a lower
energy, which shows that the branch obtained previously
(with compact solution (12) over [a, b] for s < sc as well
as (16) for s ¼ sc) is actually metastable (Fig. 3). In the
(thermodynamic) limit N ! 1, the energy of the gas
vanishes for all s > 1, while for s < 1, it behaves as
ð1� sÞ2=4 as mentioned earlier (Fig. 3). This then results
in a second order phase transition at s ¼ 1. We call this a
freezing transition, because for s > 1, energy freezes to the
value 0 in the thermodynamic limit and also the bulk
density freezes to the MP distribution.

One can analyze more precisely this new frozen phase by
computing the 1=N corrections to the energy. For large
enough s, Eq. (17) is dominated by the logarithmic term
�ð1=NÞ lnx1, i.e., E½��ðx;sÞ�’ ð���Þþð1=NÞln½Nðs�1Þ�.
We get the power law tail PNð�Þ � ðs� 1Þ�~
��N=2, where
~
 is some exponent of order N0 introduced in order to
account for N�2 corrections to E½��. This exponent may be

determined as follows: when �W > 1=N, most of the
proper times are described by the frozen density (the MP
law), i.e., �i 2 ½x�=N; xþ=N� for i > 1 with

P
i>11=�i ¼

1, while one proper time becomes much larger and
carries a ‘‘macroscopic’’ contribution, �1 ¼ s� 1 ¼
N�W � 1. In the scattering problem, this is interpreted as
the large contribution of a narrow resonance. Writing
PNð�Þ ¼

R
d�1; . . . ; d�N�ðN�� 1=�1 � 1ÞPð�1; . . . ; �NÞ

and using (1) leads to ~
 ¼ 2, hence Eq. (5).
A more precise analysis of Eqs. (18) and (19) leads us to

introduce the large deviation function �þðsÞ ¼
NðE½��ðx; sÞ� � E½��ðx; 1Þ�Þ � lnN giving the scaling
form

PNð�Þ � N��N=2 exp

�
��N

2
�þðN�Þ

�
for � >

sN
N

:

(20)

One obtains that �þðsÞ ¼ 1=ðs� 1Þ þ lnðs� 1Þ � 1�
2 ln2 (cf. inset of Fig. 3). The local minimum at s ¼ 2 is
related to (4) while the logarithmic behavior to the power
law tail (5). For finite N, the energy functions characteriz-
ing the two phases cross for s ¼ sN such that ��ðsNÞ ¼
½�þðsNÞ þ lnN�=N. Using the limiting behaviors for
s ! 1, we obtain the finite N correction to the position

of the phase transition: sN ’ 1þ ð4=NÞ1=3.
Conclusion.—In summary, by using a Coulomb gas

approach, we have analyzed the large deviation functions
controlling the Wigner time-delay distribution in the limit
of a large number of conducting channels. We have shown
that the distribution exhibits a rich structure. In particular,
its power law tail is related to a freezing transition in the
Coulomb gas, corresponding to large contributions to �W
of resonant states in the original scattering problem. We
have also performed a Monte Carlo simulation of the
Coulomb gas up to 1600 charges and found good agree-
ment with our analytical results (details will be published
elsewhere).
Several questions remain open. (i) A more precise treat-

ment of 1=N corrections would be desirable. (ii) The role
of tunneling couplings at the contacts and the crossover
between GOE and GUE symmetries were studied in [38]
for the marginal law ~pNð�Þ. Similar questions naturally
arise for the Wigner time delay distribution and might be
relevant for experimental purposes. (iii) The starting point
of our calculation, Eq. (1), describes the usual random
matrix ensembles; the distribution of �W was also obtained
in [39] for a chiral-GUE ensemble when N ¼ 1. Extension
of our analysis to such cases would be certainly interesting,
in particular with the growing interest in the study of new
symmetry classes of disordered systems.
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