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We develop a systematic approach to the linear-noise approximation for stochastic reaction systems

with distributed delays. Unlike most existing work our formalism does not rely on a master equation;

instead it is based upon a dynamical generating functional describing the probability measure over all

possible paths of the dynamics. We derive general expressions for the chemical Langevin equation for a

broad class of non-Markovian systems with distributed delay. Exemplars of a model of gene regulation

with delayed autoinhibition and a model of epidemic spread with delayed recovery provide evidence of

the applicability of our results.
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Introduction.—The theory of discrete Markov processes
is well established, and has found applications in a variety
of disciplines, including biology, chemistry, physics, evo-
lutionary dynamics, finance, and the social sciences [1].
The standard mathematical treatment is the chemical
master equation [2]. Exactly soluble problems are an
exception, although they include notable examples such
as the voter model [3]. The majority of Markovian systems
can only be analyzed using approximative schemes, e.g.,
the van Kampen or the Kramers-Moyal expansions [2,4,5].
Truncating these expansions after subleading order leads
to a Gaussian approximation, the so-called chemical
Langevin equation [6]. When linearized about a determi-
nistic trajectory this is known as the linear-noise approxi-
mation (LNA) in chemistry and biology [4]. The Gaussian
approximation and the LNA provide an important starting
point for further analytical studies and for efficient simu-
lations [6,7]. Analytical approaches of this type have been
applied to a wide range of problems [8], and for many
model systems they reflect the current state of play.
Schemes going beyond Gaussian order are only currently
being constructed [9]. The purpose of our work is to
develop a comprehensive picture of the LNA for
interacting-particle systems with delay. The time evolution
of delay systems depends on the prior path the system has
taken. Existing approaches include Fokker-Planck equa-
tions [10] and time-scale separation [11]. The system-size
expansion to first order has been carried out in
Refs. [11,12] for a model with one fixed delay time.
Recent work [13] has extended these approaches to sys-
tems with distributed delays. These are recognized as more
realistic than models with constant delays [14–16], but a
comprehensive formalism is still lacking.

Most existing work on stochastic delay models is based
on extensions of the master equation for delay systems.
We take a different approach and choose a generating
function description of entire paths of the dynamics [17].
This formalism is originally due to Martin, Siggia, Rose,

Janssen, and De Dominicis (MSRJD), and it is not to be
confused with a generating function approach to solving
master equations. The MSRJD formalism removes the
need for a master equation altogether. This provides a
new perspective on stochastic delay systems, and, we
think, it allows one to carry out the LNA more naturally
and systematically. As a consequence we are able to derive
an explicit Gaussian approximation for a broad class of
delay models, ready to be applied to problems with delay
dynamics in a number of fields.
Generating functional approach to delay systems.—

Consider a reaction system with S types of particles,
� ¼ 1; . . . ; S. The state of the system is characterized by
nðtÞ ¼ ðn1ðtÞ; . . . ; nSðtÞÞ, where the integer n�ðtÞ indicates
the number of particles of type � at time t. The dynamics
occurs via R possible reactions, i ¼ 1; . . . ; R. The rate with
which reaction i fires is denoted by TiðnÞ. Each reaction
can result in a change of particle numbers at the time the
reaction is triggered, and at a later time. The latter aspect
reflects the delay interaction. We write vi;� for the change

in the number of particles of type� at the time a reaction of
type i is triggered. Additionally when a reaction of type i
fires at time t a delay time � > 0 is drawn from a distribu-
tion Kið�Þ. A further change of particle numbers occurs at
time tþ �, indicated by the variablesw�

i;�. This description

includes Markovian processes; one then has w�
i;� ¼ 0.

The purpose of expansion methods is to construct
Gaussian stochastic differential equations (SDEs) approx-
imating the statistics of the reaction dynamics [2,4]. These
procedures rely on a large parameter N, in most cases a
scale setting the number of particles in the system. Time is
scaled so that reaction rates are of order N, TiðnÞ ¼
NriðxÞ, and relative particle numbers x� ¼ n�=N are intro-
duced. An expansion in negative powers of N then leads to
an effective SDE for x, valid in the limit of large, but finite
N. Equivalent effective SDEs can be obtained using a
theorem due to Kurtz [18]. These techniques, however,
are only applicable for Markovian systems.
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The starting point for our generating function approach
is a discretized dynamics. Introducing a time step � we
assume that the number of reactions of type i firing at time
step t and with a delayed effect precisely � 2 N� time
steps later is a Poissonian random variable k�i;t with mean

Nri½xðtÞ�Kið�Þ�2 [19,20]. We will write P ðkÞ for their
joint distribution, suppressing the dependence on x. The
generating function for the discrete-time process is then
given by

Z½c � ¼ X

k

Z
DxP ðkÞ exp

�
i�

X

t;�

c �;tx�;t

�

�Y

t;�

�½x�;tþ� � x�;t ���ðkÞ�: (1)

We have here introduced the source term c whose role is
to generate the moments of the fx�;tg. The (rescaled) total
change of the number of particles of type � at time step t is
given by

��ðkÞ ¼ N�1
X

i

�
ki;tvi;� þ X

���

k�i;t��w
�
i;�

�
; (2)

where ki;t ¼
P

���k
�
i;t. By writing the � functions in

Eq. (1) in their exponential representation, performing
the average over the fk�i;tg, keeping only leading and sub-

leading terms in an expansion in powers of N�1, and
subsequently taking the limit � ! 0 a continuous-time
generating functional is obtained. These steps are
described in detail in the Supplemental Material [19].
The resulting generating functional is equivalent to the
Gaussian dynamics

_x� ¼ F�ðt;xÞ þ N�1=2��; (3)

with h��ðtÞ��ðt0Þi ¼ B�;�ðt; t0;xÞ, and where

F�ðt;xÞ¼
X

i

�
ri½xðtÞ�vi;�þ

Z 1

0
d�Kið�Þri½xðt��Þ�w�

i;�

�
:

(4)

We set Kið�Þ ¼ 0 for � < 0, and introduce

B�;�ðt; t0;xÞ ¼
X

i

�
�ðt� t0Þ

�
ri½xðtÞ�vi;�vi;�

þ
Z 1

0
d�ri½xðt� �Þ�Kið�Þw�

i;�w
�
i;�

�

þ ½ri½xðtÞ�Kiðt0 � tÞvi;�w
ðt0�tÞ
i;�

þ ri½xðt0Þ�Kiðt� t0Þvi;�w
ðt�t0Þ
i;� �

�
: (5)

Equations (3)–(5), define the chemical Langevin equation
for systems with distributed delay. They are the main result
of our Letter and provide general expressions for the
Gaussian approximation of a wide class of delay systems
[21,22]. These equations allow one to disentangle the
contributions of the different reactions to the noise, and

they can be used for efficient numerical simulations. The
gain in computing time can be significant (see the
Supplemental Material [19] for further details). The result
of Eqs. (3)–(5) is slightly stronger than the LNA [2], which
can be obtained from a straightforward linearization
(see the Supplemental Material [19]). The resulting linear
dynamics is an important intermediate step for further
analytical investigations. In the following we will demon-
strate the applicability of this approach. We will use our
results to compute the spectra of noise-induced quasicycles
[23] in a model of gene regulation and in a model of
epidemic spread, both with delay interactions.
Application to a model of gene regulation.—Delays in

transcription and translation play an important role in gene
regulation. They are considered a potential mechanism for
oscillatory behavior in somitogenesis, giving rise to spa-
tially heterogeneous cellular structures [24,25]. Models of
these processes have traditionally focused on differential
equations (see, e.g., Ref. [25]). It is only more recently that
intrinsic noise has been included [11,26]. This is due to the
observation that particle numbers in gene regulatory sys-
tems can be small, making deterministic approximations
inadequate [27]. For example noise-driven quasicycles go
undetected in deterministic models [23]. Existing theoreti-
cal analyses are limited to models with constant delay
periods [11,12]; we note recent advances [13]. Our result
for systems with distributed delay provides a systematic
theoretical framework, and we apply it to the simple model
of gene regulation described in Refs. [25,26]. We consider
two types of particles: mRNA molecules, denoted by M,
and protein molecules P. The stochastic dynamics are
given by

M!�M;; P!�P;; M!�P
Mþ P; ; )gðnPÞ;Kð�ÞM:

(6)

The first two interactions correspond to degradation
of mRNA and protein, respectively; the constant model
parameters �M and �P describe their degradation rates.
The third interaction describes the translation of mRNA
into protein. Finally, the fourth interaction represents the
transcription process, within the model effectively the
production of mRNA. This process is suppressed by
the presence of protein molecules, as reflected by the Hill
function gðnPÞ ¼ �M½1þ ½nP=ðP0NÞ�h��1, where h and
P0 are constants. The double arrow indicates a delay
reaction. In this particular model the reaction has no effect
on particle numbers at the time t it is triggered, but only at a
later time tþ �, where � is a distributed delay time drawn
from Kð�Þ. The reaction rate depends on the number of
proteins at the earlier time nPðtÞ. Earlier works [12,26]
focus on the case in which Kð�Þ is a � distribution, and
exclude distributed delays. Applying our general result
above (see the Supplemental Material [19] for details)
we find
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_xMðtÞ ¼ �M

Z 1

0
d�Kð�Þf½xPðt� �Þ� ��MxMðtÞ

þ N�1=2�MðtÞ;
_xPðtÞ ¼ �PxMðtÞ ��PxPðtÞ þ N�1=2�PðtÞ;

(7)

where f½xPðtÞ� ¼ ½1þ ðxPðtÞ=P0Þh��1, and

h�MðtÞ�Mðt0Þi ¼
�
�M

Z 1

0
d�Kð�Þf½xPðt� �Þ�

þ�MxMðtÞ
�
�ðt� t0Þ;

h�PðtÞ�Pðt0Þi ¼ ½�PxMðtÞ þ�PxPðtÞ��ðt� t0Þ;
h�MðtÞ�Pðt0Þi ¼ 0: (8)

The Gaussian noise components �M, �P have no corre-
lations in time, as expected for a dynamics in which each
reaction changes particle numbers only at one single time.
A more complex case will be studied below. In the deter-
ministic limit N ! 1, Eqs. (7), are found to have a fixed
point (x�M, x�P) for suitable choices of parameters. A sys-

tematic expansion xM ¼ x�M þ N�1=2�M, and similar for
xP, then leads to the LNA: a pair of linear SDEs for the
fluctuation variables �M and �P. A straightforward calcu-
lation following the lines of Ref. [23] then allows one to
compute the power spectra of noise-induced cycles

PMð!Þ ¼ hj~�Mð!Þj2i, and similarly for the protein (see
the Supplemental Material [19]). Results for a uniform
distribution of delay times are shown in Fig. 1 and are
confirmed convincingly in numerical simulations. In the
LNA the stationary distribution for �M and �P can be
derived as well (see the Supplemental Material [19] for
further results and comparison against simulations).

Application to a model of epidemic spread with delayed
recovery.—We consider a variant of the susceptible-
infective-recovered (SIR) model with birth and death
[16]. The model describes a population of N individuals,
each of which can be in one of three states, S, I, or R.

Infection occurs via the process Sþ I!� 2I, and the newly
infected individual may recover (I ! R) at a later time,
where the delay is drawn from a distribution Hð�Þ. All
individuals are subject to a birth-death process, occurring
with rate �, and in which an individual dies and is imme-
diately replaced by an individual of type S. This is a
commonly used simplification, ensuring a constant popu-
lation size [16]. This setup implies that a newly infected
individual may die and be replaced by an individual of type
S before its designated recovery time is reached. This is
illustrated in Fig. 2. Assume an infection occurs at time t.
One may think of the subsequent dynamics as follows: at
the time of infection, a designated time to recovery � is
drawn from Hð�Þ. At the same time a designated time to
removal s is drawn from an exponential distribution
EðsÞ ¼ �e��s. There are then two possible subsequent
courses of events. In case (i), if � < s, recovery occurs
before death, the recovery process completes at time
tþ �, and the infective individual is replaced by an indi-
vidual of type R. The death event is discarded. The proba-
bility for case (i) to occur is 	 ¼ R1

0 d�Hð�ÞR1
� dsEðsÞ.

Conditioned on this sequence of events, i.e., if recovery
occurring before death is a given, the time to recovery
follows the distribution Kð�Þ ¼ 	�1Hð�ÞR1

� dsEðsÞ.
Case (ii) describes the opposite situation s < � occurring
with probability 1� 	. In this case the newly infected
individual dies before the designated time of recovery,
and we have a reaction of type I ! S at time tþ s. The
conditional time to removal, given that case (ii) is realized,
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FIG. 1 (color online). Power spectra of quasicycles in the gene
regulatory model [15,25,26] with uniformly distributed delays
over the interval [18:7� 
=2, 18:7þ 
=2] minutes. Lines are
theoretical predictions within the LNA; markers are from simu-
lations using a modified next-reaction method [29] and represent
data averaged over 700 realizations. Parameters are �M ¼ �P ¼
1, �P ¼ �M ¼ 0:03 (all with units min�1), P0 ¼ 10, h ¼ 4:1,
N ¼ 5000.

FIG. 2 (color online). Possible sequences of events when a
reaction with delayed recovery is triggered. A time to death s,
and a time to recovery � are drawn from the appropriate
distributions [panel (a)]. Depending on the outcome recovery
or death may occur [panels (b) and (c), respectively], the
remaining event is discarded.
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is QðsÞ ¼ ð1� 	Þ�1EðsÞR1
s d�Hð�Þ. We can summarize

the reaction scheme as follows:

R!� S;

Sþ I!	� 2I; I)Kð�Þ
R;

Sþ I !ð1�	Þ�
2I; I)QðsÞ

S:

(9)

The notation for the second reaction channel, occurring
with rate T2ðnÞ ¼ �	nSnI=N, indicates that one particle of
type S is converted into an I at the time the reaction is
triggered, and that an individual of type I is converted to R
at a later time tþ �, where � is drawn from the distribution
Kð�Þ. Similarly, the third reaction channel fires with rate
T3ðnÞ ¼ �ð1� 	ÞnSnI=N, and results in an event Sþ I !
2I at the time the reaction is triggered, and then in an event
of type I ! S at a later time tþ s, where s is drawn from
the distribution Qð�Þ.

Applying the general result above we find (with
S ¼ nS=N, I ¼ nI=N),

_SðtÞ ¼ ��SðtÞIðtÞ þ�ð1� SðtÞ � IðtÞÞþ �ð1� 	Þ
�

Z t

�1
dt0Qðt� t0ÞSðt0ÞIðt0Þ þ N�1=2�SðtÞ;

_IðtÞ ¼ �SðtÞIðtÞ � �
Z t

�1
dt0Sðt0ÞIðt0Þ½	Kðt� t0Þ

þ ð1� 	ÞQðt� t0Þ� þ N�1=2�IðtÞ: (10)

Unlike in the above model of gene regulation, the noise is
now correlated in time. Expressions for the correlation
matrix are lengthy and are reported in the Supplemental
Material [19].

Recent theoretical work has studied SIR models in
which individuals progress through a series of L infectious
‘stages’ I1 ! I2 ! � � � ! IL ! R at rate �L before they
recover (or die along the way) [16]. In our formalism this is
equivalent to a model in which Hð�Þ is a � distribution
Hð�Þ ¼ ðð�LÞL=�ðLÞÞ�L�1e��L�. To make contact with
the results of Ref. [16] we use Eqs. (10) to compute the
power spectra of noise-driven quasicycles about the fixed
point of the deterministic limiting dynamics (see the
Supplemental Material [19]). Results from the theory and
from simulations are shown in Fig. 3. We find that simu-
lations of the staged model are less costly than those of the
delay model. However the analytical calculation of the
results in Fig. 3 is more demanding in the staged model,
as it involves a larger number of particle types. For suffi-
ciently small values of the death rate � there is no notice-
able difference between the predictions of our approach
and the result of Ref. [16] (see the main panel of Fig. 3).
This latter result is based on an expansion in� and deviates
from simulations when the small-� approximation is not
justified. Our theory does not rely on such approximations,
and describes simulation results accurately in such cases
(see the inset of Fig. 3). The staged model is limited to
�-distributed recovery times, whereas our approach is

more general and applies to other delay kernels suggested
in the literature [28]. Additional results can be found in the
Supplemental Material [19].
Conclusions.—We have presented a comprehensive

approach to the LNA for stochastic dynamics with
distributed delays. Our calculation is based on a generating
functional, rather than a master equation. We focus on
probabilities to observe entire paths of the dynamics.
This makes the approach suitable for non-Markovian sys-
tems, and we are able to derive general expressions for
the Gaussian approximation of a broad class of processes
with distributed delays. The resulting nonlinear chemical
Langevin equation cannot normally be solved analytically,
but it can be used for efficient simulations. Further ana-
lytical progress can be made in the linear-noise approxi-
mation. The validity of our results is demonstrated through
the computation of power spectra of noise-driven cycles in
delay models of gene regulation and of epidemic spread.
We expect that the general expressions we have derived
will be of use for studies of a variety of phenomena in the
biological and physical sciences, and indeed in other areas
where individual-based models with delayed interactions
are relevant.
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