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We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al.,

Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation

routine that can initialize generic states, show how simple ancilla measurements can be used to calculate

many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands

the number of problems that can achieve exponential speedup over classical linear systems solvers.

To demonstrate the algorithm’s applicability, we show how it can be used to compute the electromagnetic

scattering cross section of an arbitrary target exponentially faster than the best classical algorithm.

DOI: 10.1103/PhysRevLett.110.250504 PACS numbers: 03.67.Ac, 41.20.Jb

The potential power of quantum computing was first
described by Feynman, who showed that the exponential
growth of the Hilbert space of a quantum computer allows
efficient simulations of quantum systems, whereas a clas-
sical computer would be overwhelmed [1]. Shor extended
the applicability of quantum computing when he devel-
oped a quantum factorization algorithm that also provides
exponential speedup over the best classical algorithm [2].

More recently, Harrow et al. [3] demonstrated a quan-
tum algorithm for solving a linear system of equations. In
that Letter, the authors demonstrated how to invert a sparse
matrix to solve the quantum linear system Ajxi ¼ jbi,
with a stated run time of roughly Oðd4�2 logN=�Þ [4],
where N is the size of the N � N matrix A, d is the number
of nonzero entries per row, � is the condition number
of the matrix, and � is the desired precision of the
calculation. Meanwhile, the best classical sparse-matrix
solving algorithm, conjugate gradient, has a run time of
O½Nd� logð1=�Þ� [6]. The requirements for achieving
exponential speedup were (1) the elements of A be effi-
ciently computable via an oracle (i.e., a black-box input or
output function), (2) the matrix A must to be sparse, or
efficiently decomposable into sparse form, and (3) the
condition number of A must scale as polylog N, where N
is the size of the linear system, since both quantum and
classical solvers scale linearly with �.

As presented, the algorithm had three features that made
it difficult to apply to generic problem specifications and
achieve the promised exponential speedup. These included
the following. State preparation—preparing the generic
state jbi is an unsolved problem [7–11], and no mention
on how one might do this was provided. Solution
readout—since the solution is stored in a quantum state
jxi, measurement of it is impractical. The authors sug-
gested that it could be used to calculate some expectation

values of an arbitrary operator hxjR̂jxi. However, no mea-

surement procedure was specified, and estimating hxjR̂jxi
is not trivial in general.Condition number—in order for the
quantum algorithm to achieve exponential speedup, the

condition number can scale at most polylogarithmically
with the size of the matrix A. This is a very strict condition
that greatly limits the class of problems that can achieve
exponential speedup.
In this Letter, we provide solutions to these three prob-

lems, greatly expanding the applicability of the quantum
linear systems algorithm (QLSA). In addition, we show
how our new techniques enable the first start-to-finish
application of the QLSA to a problem of broad interest
and importance. Namely, we show how to solve for the
scattering cross section of an arbitrary target exponentially
faster than the best classical algorithm.
Before we begin, we first review the original scheme of

Harrow et al. [3]. One begins by preparing a quantum state
j�i ¼ P

N�1
�¼0 j�ijbi (state normalization is ignored here

and in subsequent steps for clarity). Next, perform a
phase-estimation routine by simulating the matrix A as a
Hamiltonian for time j�i giving

j�i ! XN�1

j¼0

XT�1

�¼0

j�iei�j�t0=T�jjuji; (1)

with t0 ¼ Oð�=�Þ. This value is determined by error
requirements and implies that the total quantum algorithm
complexity scales linearly with �. To obtain Eq. (1) we
have expanded the state vector jbi in the eigenbasis of A
with eigenvalues �j, eigenvalues juji, and probability

amplitudes �j. Apply a quantum Fourier transform to the

first register yielding

j�i ! XN�1

j¼0

j~�ji�jjuji; (2)

where ~�j is related to the eigenvalues of A through a

constant scaling. Apply a rotation to an adjoined ancilla
qubit, controlled off the value of the first register giving

j�i ! XN�1

j¼0

j~�ji�jjuji
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C

�j

s
j0ia þ C

�j

j1ia
1
A; (3)
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where C is a normalization constant chosen to ensure
rotations are less than 2�, and the ancilla qubit is denoted
by the subscript a. Uncompute the first register by revers-
ing the previous steps and measure the ancilla qubit. If the
measurement result is j1i, we obtain

j�i ! C0 XN�1

j¼0

�j

�j

juji � jxi; (4)

the solution to Ajxi ¼ jbi, with normalization factor C0.
With this starting point, we present robust approaches to

issues highlighted regarding state preparation, solution
readout, and condition number that are not addressed in
the scheme outlined in Eqs. (1)–(4). Direct preparation of
the state jbi, required by Eq. (1), is not possible in general.
Consider instead the state

jbTi ¼ cos�bj~bij0ia þ sin�bjbij1ia (5)

that contains our desired arbitrary state, jbi, entangled with
an ancilla qubit in state j1ia. This can be prepared effi-
ciently in the following manner: initialize three quantum
registers and an ancilla qubit as

j�i ¼ 1ffiffiffiffi
N

p XN�1

j¼0

jjij0ij0ij0ia: (6)

Query an oracle that calculates the amplitude and phase
components, denoted as bj and �j, respectively, of the

vector jbi ¼ PN�1
j¼0 bje

i�j jji, controlled off the value in

the first register. Apply a controlled phase gate to the
ancilla qubit, controlled by the calculated phase, and
finally rotate the fourth ancilla controlled by the calculated
amplitude. Uncompute registers 2 and 3 by recomputing bj
and �j in the same register leaving

j�i ! 1ffiffiffiffi
N

p XN�1

j¼0

ei�j jji
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
bb

2
j

q
j0ia þ Cbbjj1ia

�
; (7)

where Cb � 1=maxðbjÞ to ensure that all rotations are less
than 2�. State (7) is exactly the state (5) with sin2�b¼
ðC2

b=NÞPN�1
j¼0 b2j , cos

2�b¼ð1=NÞPN�1
j¼0 ð1�C2

bb
2
j Þ, j~bi ¼

ð1= ffiffiffiffi
N

p
cos�bÞPj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

bb
2
j

q
ei�j jji, and jbi ¼ ðCb=ffiffiffiffi

N
p

sin�bÞ
P

jbje
i�j jji. The query complexity to prepare

this state is Oð1Þ.
Next, we apply Eqs. (1)–(3) of the original QLSA to the

state jbTi. We modify the original algorithm by removing
the last postselection step in Eq. (4), such that the our
implementation is unitary. This yields

j�i¼ ð1�sin2�bsin
2�xÞ1=2j�0iþsin�b sin�xjxij1iaj1ia;

(8)

where sin�x is a normalization term resulting from the
QLSA, j�0i is a garbage state in an expanded Hilbert space
spanned by the solution vector and two ancilla qubits

which are not in the state j1i simultaneously, and jxi is
the normalized solution to the linear systems problem
for an arbitrary input state jbi entangled with two ancilla
qubits in the state j1ia.
We now provide a partial resolution to the readout

problem and show how to unentangle the solution jxi
from the rest of state (8). While access to the entire solution
is impossible since it lies in an exponentially large space,
we provide examples of calculable quantities from Eq. (8).
These include the overlap of the solution with an arbitrary
vector jRi and individual values of the solution vector
denoted xj ¼ hjjxi. We also note that the solution can be

used in conjunction with the quantum data-fitting algo-
rithm [12] to perform approximate quantum state tomog-
raphy to access information from the entire Hilbert space.
To estimate the overlap, we prepare the state jRTi ¼

cos�rj ~Rij0ia þ sin�rjRij1ia using the same method we
used to prepare the state jbTi. Adjoin this state to Eq. (8)
along with a fourth ancilla qubit initialized to state j0ia.
Apply a Hadamard gate to the fourth ancilla qubit, and
use it to perform a controlled swap operation between
the registers containing the solution vector jxi and the
vector jRi, followed by a second Hadamard operation on
the ancilla. In doing so, we compute the overlap between
jxi and jRi,

jhRjxij2 ¼ P1110 � P1111

sin2�bsin
2�xsin

2�r

; (9)

where P1110 and P1111 refer to the probability of measuring
a 1 in the first three ancilla qubits and a 0 or 1 in the last
adjoined ancilla, respectively. More details on this process
can be found in the Supplemental Material [13].
To calculate a particular solution value, one simply sets

jRi ¼ jji and uses Eq. (9). Finally, one could use the
quantum data-fitting algorithm [12] to access many other
features of the solution state vector jxi. To ensure that the
data-fitting subroutine only operates on the solution vector
and not the associated garbage states, one would apply
the subroutine as a unitary operator controlled by the
two ancilla qubits in Eq. (8) being both in state j1i
simultaneously.
The last and most critical issue in the original specifica-

tion in Ref. [3] relates to the spectral condition number �.
The Hamiltonian simulation step in Eq. (1) causes the
quantum algorithm query complexity to scale linearly
with �. Thus, in order for the quantum algorithm to scale
as OðlogNÞ and achieve exponential speedup, � must scale
in the worst case polylogarithmically with the size of the
N � N matrix A. However, for most matrices one typically
has linear or even exponential scaling with N [14,15],
greatly limiting the class of problems that can achieve
exponential speedup.
We provide a solution to the condition number scaling

problem through a technique known as preconditioning
[16]. When preconditioning, rather than solving the system
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Ax ¼ b, one instead solves the modified linear system
MAx ¼ Mb. Convergence is improved if one can find a
matrix M such that the condition number of MA is much
lower than the original matrix A. The best preconditioner is
obviouslyM ¼ A�1. However, finding A�1 is equivalent to
solving the linear system, so using this as a preconditioner
provides no speedup. One solution is to find an efficiently
computable approximate inverseM � A�1. Unfortunately,
two constraints make many classical preconditioners unus-
able. These are (1) only local knowledge of A can be
obtained, and (2) the preconditioned matrixMAmust itself
be sparse for Hamiltonian simulation.

A class of preconditioners that satisfy both these con-
straints are sparse approximate inverse (SPAI) precondi-
tioners [17,18]. We integrate this method with the quantum
algorithm as follows. One attempts to find the matrixM by
minimizing

kMA� Ik2F ¼ XN�1

k¼0

kðMA� IÞekk22; (10)

where the subscript F refers to the Frobenius norm and
ek is the kth column of the identity matrix. Equation (10)
separates into N independent least squares problems

min
m̂k

kÂm̂k � êkk2 (11)

for k ¼ 0; . . . ; N � 1, where the circumflex denotes that
we have removed rows and columns containing all zeros.
One imposes sparsity constraints on matrix M. As an
example, if one chooses the sparsity pattern of A as the
sparsity pattern of M (a common choice), then the least
squares problem in Eq. (11) is very small, of order n� d,
where n is the number of nonzero rows in column k and d
is the number of nonzero elements per row of the least
squares problem in Eq. (11). Thus, we now have N inde-
pendent n� d sized least squares problems to compute the
SPAI preconditioner. We have an oracle that can compute
the elements and locations of nonzero terms in the matrix A
for a given row. One queries this oracle to setup Eq. (11)
controlled by a supplied row index. Since the matrix A is
highly sparse, both n and d are small.

Within the quantum algorithm, to simulate the matrix A,

one requires a unitary UðcÞ that calculates the elements of
MA, denoted as ak, and its column index yk for a specific
graph edge color c (see Supplemental Material [13] and
Refs. [8,19,20] for more information), conditioned on a

row index k. This operates as UðcÞjk; 0i ¼ jk; ak; yki. The
matrix preconditioner step can fit neatly within this unitary
operator. The techniques used to calculate the SPAI require
only local accesses of A, which we have access to via its
oracle, and the matrix M can be calculated for each row
independently. The sparsity structure of M is either calcu-
lated efficiently or set a priori, and thus we can calculate
yk. Therefore, the oracle for the matrix MA can be created
by combining Eq. (11) together with the original oracle for

A with only modest overhead of Oðd3Þ in run time and
Oðd2Þ in query complexity.
To prepare the state MjbTi as opposed to jbTi alone

requires a slight modification to the oracles presented in
Eqs. (6) and (7). For each row index j, the preconditioner
M must be computed using Eq. (11). This adds the same
constant overhead to the query and computational com-
plexity as stated in the previous paragraph.
The condition number of the preconditioned matrix can

be shown to be constrained to lie in a circle of radiusffiffiffi
d

p
�pre, where �pre > kAmk � ekk is the largest residual

of any preconditioned matrix row from the identity [17].

If
ffiffiffi
d

p
�pre < 1, then the spectral condition number satisfies

the inequality

� �
��������
�max

�min

���������
1þ ffiffiffi

d
p

�pre

1� ffiffiffi
d

p
�pre

: (12)

We now show how our algorithm can achieve exponen-
tial speedup over the best classical algorithm. On a
classical computer the run time is dominated by the linear
systems solving operation that requires many matrix
vector products. As noted in the introduction, the best
sparse-matrix solving algorithm, conjugate gradient, is
O½Nd� logð1=�Þ�.
In the quantum algorithm, estimation of sin�b and sin�r

requires Oð1=�Þ iterations to estimate to accuracy � with
amplitude estimation (AE). The QLSA uses Hamiltonian
simulation. Berry et al. [5] show that when using the
Suzuki higher-order integrator method [21], this step

requires Nexp � 2m2� exp½2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln5 lnðm�=�Þp � exponential

operator applications, where m is the number of subma-
trices needed to decompose the sparse matrix A into
1-sparse form (m ¼ 6d2 using the decomposition tech-
nique in Ref. [5], d is the sparsity of A, where sparsity is
defined as the maximum number of nonzero elements per
row), and � ¼ �kAk=�. For the algorithm to be accurate to
within �, � ¼ Oð�=�Þ [3]. Since we estimate sin�x using
AE, multiple applications of Hamiltonian simulation with
different times are required. Thus, the query complexity
required to estimate sin�x as well as P1110 and P1111 to

accuracy � is ~Oðd4� logN=�2Þ, where the tilde indicates
that we are neglecting more slowly growing terms in the
exponent of Nexp. Our implementation is quadratically

better in � than in the original QLSA due to our removal
of the postselection step.
The overhead to estimating the preconditioner varies

depending on which technique one uses for estimating
the sparsity pattern. As an example, if one uses an
a priori sparsity pattern [18] then one must simply solve
a small Oðn� dÞ linear system, which takes Oðd3Þ opera-
tions and Oðd2Þ A matrix oracle queries. Therefore, creat-
ing Mjbi has a run time overhead of Oðd3Þ and requires
Oðd2Þ oracle queries, compared with Oð1Þ queries for non-
preconditioned state preparation.
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Combining all steps, including the preconditioner,
the overall quantum algorithm run time complexity is
~Oðd7� logN=�2Þ. The additional factor of d3 over the query
complexity quoted above is due to the overhead of using
the preconditioner. When the SPAI is used, this algorithm
provides exponential speedup over the best classical algo-
rithm, since the condition number is bounded by Eq. (12).
The SPAI preconditioner is known to be applicable to a
wide class of problems [16–18,22,23], providing a large
number of applications that can achieve exponential
speedup.

To demonstrate the algorithm’s usefulness, we now
show how it can be used to calculate the electromagnetic
scattering cross section of an arbitrary target using the
finite element method (FEM) [24]. Calculation of the
scattering cross section is routinely used in the electro-
magnetics modeling community to characterize detectabil-
ity by radar. In particular, the calculations are used to drive
design considerations of low-observable (stealth) objects.
The FEM approach to solving an electromagnetic scatter-
ing problem is to break up the computational domain into
small volume elements and apply boundary conditions at
neighboring elements. This allows one to cast the solution
of Maxwell’s equations into a linear system Ax ¼ b.

The matrix A is constructed from a discretization of
Maxwell’s equation together with appropriate boundary
conditions due to the scattering object under consideration.
The vector b consists of the known electric field compo-
nents on the scattering boundary. The matrix A and vector
b, which contain information about the scattering object,
can be efficiently derived from the components of a matrix
F that is dependent only upon the form of the discretization
chosen to break up the computational domain (see
Ref. [24] and the Supplemental Material [13]) together
with boundary conditions that include the scattering
geometry. Edge basis vectors [25], denoted as Ni, are
highly popular for electromagnetic scattering applications.
They give a form of F as

Flj ¼
Z
V
½ðr�NlÞ � ðr�NjÞ � k2Nl �Nj�dV

þ ik
Z
S
ðNlÞt � ðNjÞtdS; (13)

where V is the volume of the computational region, S is the
outer surface of the computational region, k is the electric
field wave number, the subscript t denotes the tangential
component, and the indices l and j denote the numbering
of all the edges contained in the volume V. The surface
integral is an absorbing term used to prevent reflections off
the artificial computational boundary. On the inner scatter-
ing surface the correct boundary condition for the scattered

field on metallic scatterers is n̂� E ¼ �n̂� EðiÞ, where
EðiÞ is the incident field,E is the scattered field, and n̂ is the
unit vector normal to the surface is applied.

Using the edge basis expansion, the far-field radiation in
direction s is

EðsÞ � p̂ ¼ e�iks

4�s

X
k

RkðŝÞxk; (14)

where p̂ is the radar polarization (with p̂ � ŝ ¼ 0) and

Rkðŝ; p̂Þ ¼ p̂ �
Z
S
ŝ� fŝ� ½ðr�NkÞ � n̂�

þ ikNk � n̂geikŝ�rdS; (15)

where the index k here is the global edge index. The radar
scattering cross section (RCS) in the direction ŝ is given by

RCS ¼ lim
s!14�s

2jEðsÞ � p̂j2 ¼ 1

4�
jR � xj2; (16)

or simply the dot product of R with the solution x, where
we have assumed an incident plane wave with unit electric
field amplitude without loss of generality.
The edge basis elements can take a simple functional

form, which allows one to analytically evaluate the inte-
grals in Eqs. (13) and (15). This allows for fast computa-
tion of the matrix and vector elements, allowing for
efficient oracles. Because of the local nature of the finite
element expansion, the volume and surface integrals
extend only over the region encompassed by the finite
element. As a result A is highly sparse, also a necessary
condition for the quantum algorithm.
To obtain the cross section using the quantum algorithm,

one uses the oracles just defined, together with the SPAI,
to create the A matrix and jbi and jRi state vectors. Then
one must restore units to the normalized output received
from the quantum algorithm. Doing so yields the following
equation for the cross section in terms of outputs from the
quantum computation:

RCS ¼ 1

4�

N2sin2�bsin
2�r

C2
bC

2
rsin

2�x

ðP1110 � P1111Þ; (17)

where Cb ¼ 1=maxðbÞ and Cr ¼ 1=maxðRÞ are known
parameters. Thus, to compute the cross section, we esti-
mate each sin2�ðb;x;rÞ term as well as the P1110 and P1111

terms independently using AE.
Finally, we comment on the efficiency of the scattering

cross section calculation. With no preconditioning, finite

element condition numbers scale as N2=n [14,15], where n
is the number of dimensions of the problem, implying that
even in the most general case our algorithm scales better
than its classical counterpart for a three-dimensional finite
element problems. However, by applying the quantum
preconditioner, the eigenvalues of the finite element matrix
can be bounded achieving exponential speedup, since the
FEM admits an efficient SPAI [22,23].
We have demonstrated a quantum algorithm that gener-

alizes the QLSA to solve arbitrary linear systems. We show
how simple ancilla measurements can efficiently calculate
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many useful quantities of interest from the exponentially
large solution space. Additionally, we have greatly
expanded the class of problems that can be solved with
exponential speedup, by incorporating matrix precondi-
tioning into the quantum algorithm. To demonstrate its
functionality we showed how one could use it to solve an
electromagnetic scattering problem using the finite ele-
ment method and estimate the scattering cross section.
We show that this can be done in a time exponentially
faster than the best classical algorithm. This opens up the
potential for quantum computing to be applied to a broad
class of problems of practical interest to the computational
physics community.
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