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A long-standing problem in quantum mesoscopic physics is which operator order corresponds to noise

expressions like hIð�!ÞIð!Þi, where Ið!Þ is the measured current at frequency !. Symmetrized order

describes a classical measurement while nonsymmetrized order corresponds to a quantum detector, e.g.,

one sensitive to either emission or absorption of photons. We show that both order schemes can be

embedded in quantum weak-measurement theory taking into account measurements with memory,

characterized by a memory function which is independent of a particular experimental detection scheme.

We discuss the resulting quasiprobabilities for different detector temperatures and how their negativity can

be tested on the level of second-order correlation functions already. Experimentally, this negativity can

be related to the squeezing of the many-body state of the transported electrons in an ac-driven tunnel

junction.
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Although quantum measurement theory has been based
on the projection postulate [1], nowadays it includes gen-
eralized schemes based on auxiliary detectors, described
mathematically by positive operator-valued measures
(POVM) [2]. To specify a POVM requires arguments based
on physical considerations such as detector efficiency,
or the assumption of thermal equilibrium. A real physical
interaction generally leads to backaction on the system to
be measured, which makes the interpretation of measure-
ments difficult. Hence, all detection schemes are in general
invasive as the measured system is perturbed. The distur-
bance is strongest for projective measurements, as the
information in the measurement basis is completely erased.
In contrast, other POVM schemes can be much less dis-
turbing, as is often the case in experiments [3–5].

To avoid invasiveness, Aharonov, Albert, and Vaidman
[6] studied the limit of a weak measurement, in which the
system is coupled so weakly to the detector that it remains
almost untouched. The price to pay is a large detection
noise, which is however completely independent of the
system. The gain is that other measurements on a non-
compatible observable can be performed. After the subtrac-
tion of the detector noise, the statistics of the measurements
has a well-defined limit for vanishing coupling, which for
incompatible observables turns out to be described by a
quasiprobability and not a real probability distribution [7,8].

The most common weak-measurement theories assume
that the system-detector interaction is instantaneous
[9–14]. Such a Markovian measurement scheme is relevant
for many experiments [3] and corresponds to the symmetri-

zed order of operators: hIð�!ÞIð!Þi ! hÎð�!ÞÎð!Þ þ
Îð!ÞÎð�!Þi=2, where quantum expectation values

are defined as hX̂i ¼ TrX̂ �̂ for an initial state �̂. Here,

Îð!Þ ¼ R
dtÎðtÞei!t is the Fourier transform of the time-

dependent current ÎðtÞ in the Heisenberg picture. However,
certain experiments are well described by nonsymmetrized

correlators like hÎð�!ÞÎð!Þi. For ! � 0 [4,15–20] this
corresponds to noise emitted by the system (emission
noise) which is measured, e.g., by an absorptive photode-
tector. These experiments clearly lie beyond the scope of
Markovian weak-measurement theory.
In this Letter, we formulate a general theory of weak

detection which allows for the description of nonsymme-
trized correlators. We show that emission noise (! � 0)
and absorption noise (!< 0) appear naturally if one takes
into account measurements with memory. In fact, non-
Markovian weak measurements follow just from a few
natural assumptions imposed on the POVM in the limit
of weak coupling. The results are independent of a par-
ticular experimental realization and depend only on a
single memory function. By further requiring that no
information transfer occurs in thermal equilibrium the
scheme is fixed uniquely and contains only the detector
temperature as a parameter. Varying the detector temp-
erature interpolates between emission and absorption
measurements. As our scheme is independent of other
properties of the detector, it applies to circuit QED, meso-
scopic current measurements and quantum optical systems
equally well. Interestingly, applied to a simple harmonic
oscillator, the correlation functions in this scheme are
consistent with the Glauber-Sudarshan P function [21]
known from quantum optics for absorption detectors.
Contrary to the instantaneous measurements, the non-
Markovian scheme can violate weak positivity [19].
To test it, we propose a measurement of photon-assisted
current fluctuations, which are shown to violate a
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Cauchy-Schwarz type inequality, proving the negative
quasiprobability of the statistics after deconvolution of
the detection noise. Identifying the finite-frequency current
operators with quadratures in analogy to quantum optics,
we show that the thus created nonequilibrium state of the
current is squeezed and therefore has essentially nonclass-
ical correlations.

We start by developing a general framework of weak
quantum measurement based upon the POVM formalism
including non-Markovian features. We consider a set of n
independent detectors continuously recording n time-
dependent signals ajðtÞ for j ¼ 1; . . . ; n. Each detector is

related to an observable Âj. For example, n ammeters are

inserted in a complex circuit: ajðtÞ is the recorded current

in the branch j and ÎjðtÞ the current operator in that branch.
Note that in general ÂjðtÞ and Âkðt0Þ do not commute even

if j � k since Âj and Âk may not commute with the

Hamiltonian. We want to relate classical correlators of
measured quantities like ha1ðt1Þ � � � anðtnÞi to their equiva-
lent for weak quantum measurements h� � �iw. These should
involve linear correlators of the Âj, which can be taken at

different times to allow for memory effects of the detec-
tors, while preserving causality. The requirements of
linearity and causality are fulfilled by replacing ajðtÞ in
the correlator by a superoperator

R
dt0 �At�t0

j ðt0Þ and perform
time order, i.e.,

ha1ðt1Þ � � �anðtnÞiw ¼Tr
Z
dnt0T ½ �Atn�t0n

n ðt0nÞ � � � �At1�t0
1

1 ðt01Þ��̂:
(1)

Here, T denotes time order with respect to the arguments

in brackets, �̂ is the density matrix, and �A are superoper-
ators defined as

�A t�t0
j ðt0Þ ¼ gjðt� t0Þ �Ac

jðt0Þ þ fjðt� t0Þ �Aq
j ðt0Þ=2: (2)

The superoperators �Ac=q
j [22] act on any operator X̂ like

an anticommutator or commutator: �Ac
jX̂ ¼ fÂj; X̂g=2 and

�Aq
j X̂ ¼ ½Âj; X̂�=i@. In the above expressions we assumed

for simplicity that the detectors are in a stationary state so
that only time differences tj � t0j matter.

We will also assume that the average of single measure-
ments coincides with the usual average for projective mea-

surements, i.e., hajðtÞiw¼hÂjðtÞi. This implies gjðt�t0Þ¼
�ðt�t0Þ. Other choices of g simply mimic the effect of
classical frequency filters. Thus, the only freedom left is

the choice of the real function fj that multiplies �Aq
j . Note

that fjðtÞ can be nonzero for t > 0 without violating cau-

sality, since it is accompanied by �Aq
j and only future mea-

surements are affected. For the last measurement, future

effects disappear because the leftmost �Aq vanishes under
the trace in Eq. (1). For simplicity, we will assume a single

f ¼ fj, independent of j. The limitf ¼ 0 corresponds to the

Markovian case.
Now we want to show that correlations obeying these

requirements can be obtained from the general quantum

measurement formalism. Based on Kraus operators K̂ [23],
the probability distribution of the measurement results is

� ¼ h �Ki for �K X̂ ¼ K̂ X̂ K̂y, where the only condition on K̂
is that the outcome probability is normalized regardless

of the input state �̂. Here we need K̂ to be time dependent.

In general, we assume that K̂½Â; a� is a functional of the

whole time history of observables ÂðtÞ and outcomes aðtÞ.
We shall assume that the functional K̂ is stationary so it
depends only on relative time arguments.
The essential step to satisfy Eq. (1) is to take the limit

K̂ � 1̂, which corresponds to a noninvasive measurement.
This can be obtained from an arbitrary initial POVM by

rescaling K̂½Â; a� ! K̂� ¼ Cð�ÞK̂½�Â; �a� with � ! 0,

which defines �� ¼ h �K�i. Here, Cð�Þ is a normalization

factor.
The desired correlation function (1) can be derived by

the following limiting procedure for an almost general
POVM,

ha1ðt1Þ � � � anðtnÞiw ¼ lim
�!0

ha1ðt1Þ � � � anðtnÞi�; (3)

where the average on the right-hand side is with respect to
��. We assume the absence of internal correlations bet-

ween different detectors, namely, K̂½Â;a�¼T
Q

j K̂½Âj;aj�,
where T applies to the time arguments of Â.

Expanding K̂½Â;a�=k½a�¼1þR
dt0F½a;t0�Âðt0ÞþOðÂ2Þ,

we find, up to OðÂ2Þ,
�K=jk½a�j2 ’ 1þ

Z
dt0ð2ReF �Acðt0Þ � @ImF �Aqðt0ÞÞ: (4)

Here, jk½a�j2 is a functional probability of time-resolved
outcomes independent of the properties of the system
which represents the detection noise. As we want the
measurement to be noninvasive to lowest order, we impose
the condition that

R
F½a; t0�jk½a�j2Da vanishes; Da

is the functional measure. Our conditions imply thatR
2aðtÞReF½a;t0�jk½a�j2Da¼�ðt�t0Þ, andwegetfðt�t0Þ¼

�R
2aðtÞ@ImF½a;t0�jk½a�j2Da. Thus, themost general weak

Kraus operator takes the form given in Eq. (4), which is
our main result. A particular Gaussian example of a POVM
realizing this scheme is presented in the Supplemental
Material A [24]. We emphasize that our measurement
scheme is not limited to any particular model of a detector,
rather it captures generic properties of a general weakly
invasive detector, whose property is encoded in the choice
of the real function fðtÞ.
To discuss the consequences of different forms of f, we

now calculate the noise spectral density,

Sabð!Þ ¼
Z

dtei!thaðtÞbð0Þiw: (5)
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An important special case is a system in a thermal equi-

librium state, �̂� expð�Ĥ=kBTÞ. We further assume that

the averages of Â and B̂ vanish. If the detector temperature
Td is equal to T and in the absence of other nonequilibrium
effects (like a bias voltage, or special initial conditions),
we expect that no information transfer from the system to
the detector occurs, i.e., that Sabð!Þ ¼ 0. This requirement
leads to a necessary condition on the form of f (see
Supplemental Material B [24]): fð!Þ ¼ i@ð2nBð!Þ � 1Þ ¼
i@ cothð@!=2kBTdÞ, where nBð!Þ is the Bose distri-
bution at temperature Td. Equivalently, fðtÞ¼
jkBTdjcothð�tkBTd=@Þ (at zero temperature fðtÞ ¼ @=�t).
We use the name equilibrium order for this special choice
of f. The zero temperature case has been also called time
normal [25]. It is relevant for experimental situations
like in [4] and consistent with the quantum tape [19] or
photodetection model [20] if the temperature of the tape
(or the photons) is Td.

The necessary form of f is also sufficient. Indeed,
the property Sabð!Þ ¼ 0 follows from the fluctuation-
dissipation theorem [26] (h� � �iT denotes the equilibrium
average)

Z
dtei!thÂðtÞB̂ð0ÞiT ¼

Z
dtei!tþ@!=kBThB̂ð0ÞÂðtÞiT; (6)

because for an arbitrary stationary state we get

Sabð!Þ ¼
Z

dtei!the@!=2kBTdB̂ð0ÞÂðtÞ
� e�@!=2kBTdÂðtÞB̂ð0Þi= sinhð@!=2kBTdÞ: (7)

For zero detector temperature, this reduces to

Z
ei!tdth�ð�!ÞÂðtÞB̂ð0Þ þ �ð!ÞB̂ð0ÞÂðtÞi; (8)

which corresponds to emission noise for Â ¼ B̂ and !> 0
[18]. Note that in that case (7) and (8) are even functions of
! but the operators do not appear in symmetrized form.
Thus, for Td � T, Sabð!Þ is in general not equal to zero
and contains information about the system. It is interesting
to note that reversing the sign of f transforms Sabð!Þ into
absorption noise for ! � 0. Hence, measuring absorption
noise requires a detector formally described by a negative
temperature Td in f and Eq. (7).

It is interesting to note that for this special choice of f the

higher-order fluctuations also vanish if �̂/expð�Ĥ=kBTÞ
and T ¼ Td. We can write the Fourier transform of (1) as

Z
dntei

P
k
!ktkTrT

Y
k

X
�

�e�@!k=2kBT �A�
k ðtkÞ

2 sinhð@!k=2kBTÞ �̂; (9)

with �AþX̂ ¼ Â X̂ and �A�X̂ ¼ X̂ Â . Now, we can split �̂ ¼
�̂1=2�̂1=2, expand the above expression as a sum of operator

products and move one factor �̂1=2 leftwards and the other
rightwards so that they meet again at the trace sign, which
gives (1) in the form

Z
dntei

P
k
!ktkTr�̂T

Y
k

X
�

�e�@!k=2kBT �A�
k ðtk � i@=2kBTÞ

2 sinhð@!k=2kBTÞ :

(10)

Shifting t ! t� i@=2kBT and using Tr �Aq . . . ¼ 0 leads to

Z
dnte

P
k
i!ktkTr�̂T

Y
k

�Aq
kðtkÞ=2i sinhð@!k=2kBTÞ ¼ 0:

(11)

The vanishing of all correlations means that at any
temperature T ¼ Td in equilibrium no information is trans-
ferred, not even in higher-order correlators. This is a prop-
erty of the memory function f in the idealized limit of our
weak detection scheme. In the photoabsorption scheme at
zero temperature, these properties are intuitively clear [20],
because no photons are emitted.
Subtracting the (large) detection noise [by deconvoluting

the jk½a�j2 term in Eq. (4)], the correlations defined in
Eq. (1) can be described by a quasiprobability. Surprisingly,
the equilibrium order differs qualitatively from the
symmetrized one, when one considers weak positivity,
i.e., second-order correlations can be obtained from a posi-
tive probability [8,27]. The symmetrized correlation matrix

Cab ¼ habi ¼ hÂ B̂þB̂ Âi=2 is positive definite, and the
Gaussian probability distribution / expð�P

abC
�1
ab ab=2Þ

reproduces all first- and second-order symmetrized quantum
correlations. This is not the case for equilibrium order.
If Td > T the autocorrelation is negative meaning that also
the underlying quasiprobability is negative. For example,

at T ¼ 0 and !> 0 Eq. (7) gives hað�!Það!Þiw ¼
�hÂð!ÞÂð�!Þie�@!=2kBTd=2 sinhð@!=2kBTdÞ. In a station-
ary situation and for Td ¼ 0, the weak positivity holds,
because the correlation matrix (8) is positive definite.
However, it can be violated in nonstationary situations.
This can be demonstrated using a two level system with

the Hamiltonian Ĥ ¼ @��̂z=2, with observables Â ¼ B̂ ¼
�̂x þ �̂z and the initial state �̂ð0Þ ¼ ð1̂þ �̂yÞ=2. By direct

calculation (see Supplemental Material C [24]) we find
hað0Þbð0Þiw ¼ �ð2=�Þ ln�t1, where t1 is a cutoff set by
intrinsic decoherence or detector backaction. Since the
observables measured by the two detectors are the same,
hað0Þbð0Þiw ¼ ha2ð0Þiw and weak positivity is obviously
violated.
There is an interesting connection between equilibrium

order and the Glauber-Sudarshan P function [21].

Let us take the harmonic oscillator Ĥ ¼ @�ðp̂2 þ x̂2Þ=2,
with ½x̂; p̂� ¼ i and �> 0, and consider correlations
with respect to the quasiprobability (1) with antisymmetric
fðtÞ. In this case the time order is irrelevant as shown

in Supplemental Material D [24]. Let us define �AðtÞ ¼
�AcðtÞ þ R

dt0fðt� t0Þ �Aqðt0Þ=2. The evolution of �xðtÞ and
�pðtÞ is just classical,
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�xðtÞ ¼ �x cosð�tÞ þ �p sinð�tÞ;
�pðtÞ ¼ �p cosð�tÞ � �x sinð�tÞ;

(12)

while for t ¼ 0 [sincefðtÞ is antisymmetric and real]wehave
�x¼ �xcþi �pqfð�Þ=2, �p¼ �pc�i �xqfð�Þ=2. Equation (12)
means that all correlators in this case undergo the classical
time evolution. We now define the ladder operators through

ây ¼ ðx̂þ ip̂Þ= ffiffiffi
2

p
with ½â; ây� ¼ 1̂. This leads to �a ¼

�ac � fð�Þ �aq=2 and �ay ¼ �ayc þ fð�Þ �ayq=2. In the zero-
temperature case, fð�Þ ¼ i@ (a perfect photodetector), and

defining � ¼ ðxþ ipÞ= ffiffiffi
2

p
we get the single-time quasipro-

babilistic average h�n�	ki ¼ Trân�̂âyk. On the other hand,
this is a property of the Glauber-Sudarshan function Pð�Þ,
defined by �̂ ¼ R

d2�Pð�Þj�ih�j for normalized coherent
states âj�i ¼ �j�i, h�j�i ¼ 1 [21]. Since h�n�	kiP ¼R
d2��n�	kPð�Þ ¼ Trân�̂âyk, we find that the quasiprob-

ability for a zero-temperature detector is identical to Pð�Þ.
It is interesting to note that reversing the sign of f leads to
the Husimi-Kano Q function instead of P [2], while f ¼ 0
gives the Wigner function [7,28].

The fact that we obtain the P function shows the deep
connection between the non-Markovian weak measure-
ment formalism and the quantum-optical detector
theory. One of the interesting consequences is that zero-
temperature equilibrium order is consistent with photo-
absorptive detection schemes, in which the P-function
appears naturally [2]. It is also interesting to draw a link
between the violation of weak positivity in equilibrium
order and the properties of squeezed states. The ground
state of a harmonic oscillator fulfills hx̂2i ¼ 1=2, which
corresponds to hx2iP ¼ 0. A squeezed state can be such
that hx̂2i< 1=2, still minimizing the Heisenberg uncer-
tainty principle. This translates into a negative variance
of the position described by the (quasiprobability) P func-
tion, i.e., hx2iP < 0 [29] and is therefore equivalent to a
violation of weak positivity.

Let us now consider how our results apply to the case
of current fluctuations in mesoscopic conductors. The
quantum description of the noise in the junction, SIð!Þ ¼R
dtei!th�IðtÞ�Ið0Þi, where �IðtÞ ¼ IðtÞ � hIðtÞi, will

depend on the choice of f in (1). For f ¼ 0, we get
symmetrized noise SsI ¼ G@

P
�wð!� eV=@; TÞ=2, where

G is the conductance, V is the constant bias voltage,
and wð�; TÞ ¼ � cothð@�=kBTÞ [19]. For f given by
equilibrium order with an arbitrary Td, we obtain SI ¼
SsI �G@wð!; TdÞ. Hence, the detection schemes differ by a
term that is independent of the voltage and the temperature
of the system, making it impossible to detect nonclassical-
ity in this scheme.

An experimentally feasible test of squeezing and
violation of weak positivity is possible using a coherent
conductor (e.g., a tunnel junction for the sake of simplicity)
subject to an ac voltage bias VðtÞ ¼ Vac cos�t [30].
Consider the classical inequality

j�Ið!Þ��Ið�!Þj2�0)hj�Ið!Þj2i�Reh�I2ð!Þi: (13)

For symmetrized order one gets [31]

hf�Îð!Þ; �Îð!0Þgi=2 ¼ 2�@G
X
m

�ð!þ!0 � 2m�Þ;
X
n

JnðeVac=@�ÞJn�2mðeVac=@�Þwð!� n�Þ; (14)

where Jn are the Bessel functions. In the case of equili-
brium order at Td ¼ 0 one only has to subtract
2�@Gj!j�ð!þ!0Þ from the above result. As shown in
Fig. 1, the classical inequality is violated for ! ¼ � in a
certain range of eVac=@�, but only in equilibrium order.
This can be reinterpreted in terms of the existence of
squeezing in the quantum shot noise: consider the two
quadratures associated with the finite-frequency current

operator: Â ¼ i½�Îð!Þ � �Îð�!Þ�=2 and B̂ ¼ ½�Îð!Þ þ
�Îð�!Þ�=2. Using h½Îð!Þ; Îð�!Þ�i ¼ 2t0G@!, we find

[32] h½Â; B̂�i ¼ it0G@! (with the total detection time t0).
Thus the squeezing condition [2],

hÂ2i< jh½Â; B̂�ij=2; (15)

is related to the violation of weak positivity, hA2iw < 0 in
equilibrium order with Td ¼ 0 and allows the violation of
Eq. (13). Hence, according to Fig. 1, quantum shot noise
with ac driving creates current states, which resemble
squeezed light for a certain range of the ac voltage.
In conclusion, we have presented a theory of a generic

weak-measurement scheme that includes emission noise. It
requires a non-Markovian POVM with a specially chosen
memory function f, which has no analog in the Markovian
picture. The scheme is consistent with the absence of
information flow between system and detector in equilib-
rium at a given temperature. Hence, any detection requires
a nonequilibrium situation. Another direct consequence
is that even the simple Markovian detection process
must involve a nonequilibrium detector state. Finally,

0.5 1.0 1.5 2.0 2.5 3.0
eV ac

0.5

1.0

1.5

2.0

I ,I 2

I I

Re I2

FIG. 1 (color online). Quantum correlation functions (in units
of 2�G@�t0) for a tunnel junction at zero temperature T ¼ 0.
The emission noise hÎð��ÞÎð�Þi (red line) violates the classical
inequality (13) for a certain range of eVac (shaded region). This
violation is equivalent to the squeezing condition (15) for the
symmetrized noise hfÎð��Þ; Îð�Þgi=2 (blue line).

PRL 110, 250404 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
21 JUNE 2013

250404-4



nonsymmetrized order leads to a violation of weak pos-
itivity, which can be tested experimentally by violation of
suitable inequalities, equivalent to the squeezing condition
in some cases.
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Note added.—Our prediction about ac-driven squeezing
has been recently confirmed experimentally [33].
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