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We report on the detailed study of multicomponent spin waves in an s ¼ 3=2 Fermi gas where the

high spin leads to novel tensorial degrees of freedom compared to s ¼ 1=2 systems. The excitations of a

spin-nematic state are investigated from the linear to the nonlinear regime, where the tensorial character

is particularly pronounced. By tuning the initial state we engineer the tensorial spin-wave character, such

that the magnitude and the sign of the counterflow spin currents are effectively controlled. A comparison

of our data with numerical and analytical results shows good agreement.
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Spin-interaction driven phenomena are crucial for the
behavior of many quantum systems, e.g., ferromagnets [1]
and high-temperature superconductors [2] and they are
also relevant in spintronics applications [3]. Apart from
condensed matter systems with an electronic spin of s ¼
1=2, dilute atomic gases show a wealth of novel spin
excitations, where the spin is provided by the internal
hyperfine structure of the atoms. Pioneering experiments
with hydrogen [4] and helium [5] showed the existence of
transverse spin waves, which arise from intrinsic spin-
exchange interactions [6–8]. Longitudinal spin waves in
two-component mixtures have been observed in noncon-
densed bosonic 87Rb gases [9–11]. For weakly interacting
fermions, slow spin currents were reported near the zero
crossing of a Feshbach resonance [12–14] and the
interaction-induced damping of dipole oscillations was
studied [15]. Prominent examples for spin-dependent phe-
nomena in strongly interacting fermionic systems are the
miscibility of spin mixtures [16] and the quest for itinerant
ferromagnetism [17–20]. In contrast to conventional two-
component systems, the hyperfine structure of many atoms
also allows for spinor gases with s > 1=2, which offer a
whole new set of possibilities to study spin-dependent
phenomena [21–24]. This includes spin-changing colli-
sions [25,26], hidden interaction symmetries [27,28],
spontaneous domain formation [29], the existence of
spin-nematic states [30,31], novel superfluid phases
[32,33], and SUðNÞ degenerate ground states [34–38].
For fermionic atoms, s ¼ 3=2 constitutes the simplest
realization of a high-spin system and has been thoroughly
studied theoretically, being a model system for all higher
spins [27,28,39].

In this Letter, we demonstrate the controlled generation
of spin waves in a quantum degenerate Fermi gas with

pseudospin s ¼ 3=2. We experimentally study the proper-
ties of these fundamental collective spin excitations for a
wide range of parameters. The results are explained within
a generalized semiclassical mean-field theory (SMFT) for
fermionic atoms with a high spin of s � 3=2, which is an
extension of the collisionless Boltzmann equation used to
describe conventional s ¼ 1=2 systems [7,13,14,40,41].
Spin waves in such high-spin systems are predicted to
exhibit very complex and novel properties, which can be
most intuitively understood in the language of irreducible
spherical tensors (for bosonic gases, see [42,43]). While
for s ¼ 1=2 it is sufficient to use the identity and the three
spin matrices [12], the description of higher spins addi-
tionally requires higher-order tensors, such as the nematic
and octupole tensor for s ¼ 3=2.
We have investigated spin-wave excitations from the

linear regime, where the oscillation frequency is minimal,
to the nonlinear regime, where the spin-wave frequency
strongly depends on the excitation amplitude. The use of
the tensor basis allows us to directly observe the effect of
the nonlinear mode coupling, which leads to the excitation
of breathing modes in the spin-nematic component.
Moreover, we demonstrate the controlled manipulation of
the spin-wave composition by engineering the coherences
of the initial state. In that way, the spin current for two of
the four components can be reversed changing the spin-
wave character from spin octupole to spin vector. Our
results illustrate the high degree of control that can be
exerted on spin waves in high-spin Fermi gases. The
good agreement with the theoretical results shows that
our SMFT well describes high-spin Fermi gases in the
quantum degenerate regime. The combined experimental
and theoretical findings pave the way toward novel
schemes for atom spintronics using the intrinsic high spin.
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Our measurements are performed in a quantum degen-
erate gas of 40K in the f ¼ 9=2 hyperfine manifold. We
initially evaporate a balanced mixture of jm ¼ 1=2i and
jm ¼ �1=2i to quantum degeneracy in an elongated, spin-
independent optical dipole trap [40]. The final trapping
frequencies are !x;y;z ¼ 2�� ð70; 70; 12Þ Hz. At this

point, we apply a radio-frequency (rf) pulse to create a
coherent superposition with the states j� 3=2i [Fig. 1(a)].
We initialize the spin waves by applying a small magnetic
field gradient up to a few G=m for 10 ms, which leads to a
phase spiral for coherent superpositions of different spin
components as sketched in Fig. 1(b). While these coherent
superpositions are initially still spin polarized locally, the
phase twist allows for interactions in a trapped gas where
the external potential induces spatial dynamics [41]. In
general, the resulting mean-field interaction couples the
spin degrees of freedom to different modes of the external
trap leading to the emergence of spin waves. We detect the
spin current using absorption imaging either in situ or after
18.5 ms time of flight (TOF) with a Stern-Gerlach separa-
tion of the spin components [40]. In Fig. 2(a) we show a
typical example for an s ¼ 3=2 spin wave initialized by
a 10 ms gradient of �B ¼ 3:4 G=m. The measurements
reveal oscillatory spin currents in all four spin components.

We observe a time-independent total density, meaning that
the spin waves constitute counterflow spin currents without
an accompanying net mass transport. In particular, note
the inverted flow direction of j1=2i (j� 1=2i) with respect
to j3=2i (j� 3=2i), which is a clear indication of the new
tensorial degrees of freedom as discussed later.
For the theoretical description of high-spin Fermi

gases, we generalize a one-dimensional SMFT [40] pre-
viously used to explain spin-wave phenomena in thermal
fermionic and bosonic systems with effective spin 1=2
[7,10,11,13,14,41] and to predict the spin-wave dynamics
in thermal bosonic s ¼ 1 gases [42,43]. The multicompo-
nent system is described in a mean-field fashion by a
single-particle density matrix (SPDM) in the form of a
one-dimensional Wigner functionWklðz; pÞ with spin indi-
ces k and l. The semiclassical equations of motion take the
form of a Boltzmann equation in the collisionless regime.
To leading order they read

@tWðz; pÞ ¼ @0Wðz; pÞ þ 1

i@
½Wðz; pÞ; VðzÞ�; (1)

assuming a spin-independent external harmonic trap. Here,
VmnðzÞ ¼

RP
klðUklnm �UkmnlÞWklðz; pÞdp is the effec-

tive mean-field potential with the spin-dependent coupling
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FIG. 1 (color online). (a) Single-particle density matrix for
an incoherent superposition of j1=2i and j� 1=2i (left) and the
resulting coherent superposition of all four components after a
resonant rf pulse (right). Diagonal elements Wii are real and
represent the populations. Off-diagonal elements are complex
numbers Wij ¼ jWijjei�ij and include the phase �ij between

different components. Only the absolute value jWijj is plotted.

(b) Sketch of the local phase across the Fermi gas after pulses
with different magnetic field gradients. (c) m ¼ 0 component of
the l ¼ 0, 1, 2, 3 tensor operators Tm

l for s ¼ 3=2 in comparison

to the corresponding spherical harmonics Ym
l .
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FIG. 2 (color online). (a) In situ time evolution of all four
spin components after a 10 ms pulse with a magnetic field
gradient of �B ¼ 3:4 G=m. Shown are the column densities at
different times after the excitation. (b) Deviation from the
initial population of the m ¼ 0 component of the vector
(l ¼ 1), nematic (l ¼ 2), and octupole (l ¼ 3) components.
The vector and octupole components show spatial dipole
oscillations, while the nematic component clearly exhibits
breathing dynamics. (c),(d) Numerical calculation for the pa-
rameters of (a),(b).
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constants Uijkl [40], @0 ¼ ð�p=m@z þm!2
zz@pÞ captures

the time evolution due to the harmonic trap and the kinetic
energy, m is the mass of 40K, and ½:; :� indicates the com-
mutator in spin space. In the simulations, higher-order
terms of the mean-field interactions are also taken into
account, leading to very small deviations only [40]. For
an s ¼ 3=2 system, the Wigner function in spin space is a
4� 4 SPDM, where the diagonal elements Wii represent
the absolute population of the spin components and the
off-diagonal elements Wij¼jWijjei�ij represent the

single-particle coherences between different components.
To induce a time evolution of the populations Wii, it is
sufficient to spatially vary the phases �ij of the off-diagonal

elements Wij, since both are coupled via the commutator

in Eq. (1). Figure 2(c) shows numerical results for the
exact experimental parameters, which are in good agree-
ment with the measured results. This demonstrates the
capability of the SMFT to quantitatively describe interact-
ing high-spin Fermi gases in the quantum degenerate
regime.

To obtain deeper insight into the underlying physical
processes, let us at this point briefly recall the description
of spin in the language of irreducible spherical tensors
Tm
l , which simplify the equations of motion drastically.

The Tm
l transform invariantly under rotations and there-

fore can be ordered by a total spin l and a magnetic
quantum number m ¼ �l; . . . ; l. Most common are the
spherical harmonics for orbital angular momentum

[Fig. 1(c)] and the spin vector ~S / ð�x; �y; �zÞ where �i

are the Pauli matrices. Decomposing the Wigner function
(mean field) in the tensor basis as Wm

l ¼ TrðTm
l WÞ [Vm

l ¼
TrðTm

l VÞ], the m ¼ 0 components describe the occupa-

tions whereas all other components describe coherences.
Any (pseudo) s ¼ 1=2 system can be conveniently
described by the identity matrix (l ¼ 0) describing the

total density, and the spin vector ~S (l ¼ 1) describing the
magnetization and the coherences [11–14,41]. To describe
the physics of larger spins it is necessary to include
higher-order tensors. In a spin 3=2 system, as discussed
here, the spin-nematic tensor (l ¼ 2) and the spin-
octupole tensor (l ¼ 3) must be included (see Fig. 1(c)
and [40]).

Figures 2(b) and 2(d) show the time evolution of the
m ¼ 0 component of the l ¼ 1, 2, 3 tensors for the experi-
mental and numerical data of Figs. 2(a) and 2(c), respec-
tively. Note the predominantly breathing dynamics of the
spin-nematic component, which is qualitatively different
from the spatial dipole oscillations in the spin-vector and
spin-octupole components. This results from a linear
decoupling of the nematic component due to the rotational
symmetry which can be understood by inserting the
decomposition Wm

l (Vm
l ) into Eq. (1). The rotational sym-

metry of the interactions leads to the particular simplifica-
tion that Vm

l / Wm
l . Omitting them index for simplicity the

equations of motion read [44]

@tW0 ffi @0W0;

@tW1 ffi @0W1 þ 1

i@
ð½W1; V1� þ ½W2; V2� þ ½W3; V3�Þ;

@tW2 ffi @0W2 þ 1

i@
ð½W2; V1 þV3� þ ½W1 þW3;V2�Þ;

@tW3 ffi @0W3 þ 1

i@
ð½W3; V1� þ ½W1 þW3; V3� þ ½W2; V2�Þ:

(2)

The structure of Eqs. (2) together with the relation Vm
l /

Wm
l has several important consequences. First, the total

densityW0
0 is not altered by the phase spiral, since its time

derivative does not depend on the off-diagonal elements;
it remains constant as we observed in the experiment.
Second, the time derivative of the nematic tensors Wm

2

is proportional to the vector and octupole components
(Wm

1 and Wm
3 ), but does not depend on a term [Wm

2 , V
m
2 ].

This is a result of time-reversal symmetry and leads to a
linear decoupling of the nematic component, in the sense
that a purely nematic state does not support nematic
excitations to first order. In the nonlinear regime, how-
ever, where vector and octupole excitations possess a
large amplitude, nematic excitations are created via non-
linear mode coupling. This leads to the weak breathing
dynamics of the nematic component visible in Fig. 2,
where a purely nematic state was initially prepared. The
discussion above demonstrates the improved insight into
high-spin spin waves granted by the irreducible spherical
tensor description.
To analyze the behavior of the system for different

excitation amplitudes, we applied different gradient
strengths during the initialization of the spin wave [45].
This corresponds to a change of the initial phases �ij in the

SPDM, while the initial coherence amplitudes jWijj are
kept constant. In Fig. 3 experimental results are compared
to numerical calculations and show good agreement: For
small gradients, the frequency is amplitude-independent
and the amplitude rises approximately linearly with the
gradient strength. For large gradients, the frequency
approaches the trapping frequency and is again only
weakly dependent on the excitation amplitude. For inter-
mediate gradients, the system shows a strongly nonlinear
behavior which results in an amplitude-dependent
oscillation frequency. In the regime of small gradients,
corresponding to small excitation strengths one can linea-
rize Eqs. (2) and describe excitations in terms of their
leading moments in z and p [10], which corresponds to
pure spatial dipole oscillations [40]. Their oscillation
frequency for the present initial state can be derived to be

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

mf þ!2
z

q
�!mf , where !mf is the mean-field

interaction energy as defined in Ref. [40]. This fre-
quency is determined by a competition between the trap-
induced spatial oscillations and the mean-field induced
rotation of the spin. For our parameters, we calculate
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! ¼ 2�� 2:3 Hz, which is in good agreement with the
experimental results. The linearized equations of motion
also confirm the pure vector and octupole character of the
dipole excitations for a perfectly nematic initial state as
discussed above. For large gradients, the frequency slowly
approaches the trapping frequency: In this regime, the
phase spiral is averaged out dynamically on time scales
2�=!z [41] such that the mean-field potential no longer
affects the subsequent oscillation.

All measurements discussed so far were performed with
the same purely nematic initial state. By modifying the
rf-pulse sequences used for the preparation of the initial
state we can control the amplitude of the coherences jWijj
and populations Wii in the SPDM. By this the multipole
decomposition of the initial state can be widely controlled
and allows for the initialization of, e.g., pure vector or
nematic initial states, which in turn results in different
spin and spatial characteristics of the emerging spin
wave. Following this direction, we performed a second
set of experiments, where we engineered the spin-wave
excitations by keeping the population of all four spin
components constant but changing the initial coherence
amplitudes jWijj [Fig. 4(b)]. Note, that this is complemen-

tary to the results shown in Fig. 3, where we changed the
phase �ij of the coherence by using different gradient

strengths. Figure 4(a) shows the resulting oscillation
amplitude for all four spin components depending on
c ¼ jW1=2;�1=2=W1=2;1=2j. At c � 0:5, the system changes

its qualitative behavior where the j� 1=2i components
interchange their oscillation direction. Using the tensor
notation, the spin wave at small c is dominated by the

spin octupole, where neighboring spin components have an
inversed sign and therefore oscillate in opposed directions.
At large c, the oscillation becomes spin-vector dominated,
where spin components with the same sign of magnetiza-
tion oscillate in the same direction [Fig. 4(c)]. The anew
increase of the octupole amplitude at large c is due to
higher-order spatial excitations, possible in the nonlinear
regime, where the measurements were performed. At
c � 0:5, the vector and octupole component contributions
mutually cancel each other, leading to a vanishing spin
current in the j� 1=2i components. Again the numerical
calculations describe the engineered spin waves very well.
In conclusion, we have thoroughly investigated the

physics of collective spin waves in a high-spin Fermi
gas. Comparing experimental and numerical results, we
showed that high-spin Fermi gases in the quantum degen-
erate regime can be well described using a SMFT. We have
analyzed the spin-wave excitation spectrum for different
excitation strengths ranging from the linear deep into the
nonlinear regime. By employing irreducible spherical ten-
sors, the SMFT allows us to intuitively explain the novel
emerging spin-wave characteristics in a high-spin system.
We find a linear decoupling of the spin-nematic
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component, which in turn allowed us to directly observe
nonlinear mode coupling in the spin-wave dynamics.
Finally, we demonstrated how to control the multipole
character of spin waves which leads to a reversal of the
resulting counterflow spin current of two spin components.
Our results constitute the first experimental investigation of
coherent many-body dynamics of a high-spin fermionic
quantum gas. They demonstrate the controlled manipula-
tion of atomic spin currents which, together with the
theoretical understanding, paves the way toward novel
schemes for spintronics in ultracold atomic gases, using
the intrinsic high spin as a valuable resource.
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