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Is it possible to extract the size and structure of chromosomal territories (confined domain) from the

encounter frequencies of chromosomal loci? To answer this question, we estimate the mean time for two

monomers located on the same polymer to encounter, which we call the mean first encounter time in a

confined microdomain (MFETC). We approximate the confined domain geometry by a harmonic potential

well and obtain an asymptotic expression that agrees with Brownian simulations for the MFETC as a

function of the polymer length, the radius of the confined domain, and the activation distance radius " at

which the two searching monomers meet. We illustrate the present approach using chromosome capture

data for the encounter rate distribution of two loci depending on their distances along the DNA. We

estimate the domain size that restricts the motion of one of these loci for chromosome II in yeast.
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Chromosome capture is a method where high-
throughput data are generated about an instant of nuclear
chromosomal organization [1,2]. These data consist of a
collection of DNA fragments of various sizes, and the
frequency of each fragment is a measure of the proximity
of two DNA loci. It should be possible in principle
to reconstruct the local chromosomal organization from
this data. Yet such reconstruction remains a daunting
challenge.

We propose here to develop a method based on a poly-
mer model to estimate the size of a chromosomal domain
from the distribution of encounter frequency of a loci with
others, obtained from chromosome capture data. Indeed,
the frequency that two loci encounter is the rate at which
two monomers of a polymer chain meet. This rate is the
reciprocal of the mean first passage time h�ei, which we
call the mean first encounter time in confined domain
(MFETC). We will derive an approximated expression
for h�ei using the Rouse polymer model [3] in a ball of
radius A, where the polymer length is N and the radius " is
the distance at which the two monomers meet [Fig. 1(a)].
By fitting empirical data of chromosome capture, we will
obtain the radius of chromosomal confined domain.

Although polymer looping time in a free space was
previously analyzed using numerical and asymptotic meth-
ods [4–11] and experimental methods [12,13], these stud-
ies cannot be used here directly. Thus, we consider here
the encounter between monomers in a confined domain.
In addition, although the persistence length of the chroma-
tin fiber was previously estimated to be 200 nm [14], new
in vivo experimental evidence suggests that it is only of the
order of tens of nms [15]. We shall thus neglect the bending
elastic in a first approximation and develop an approach
based on Rouse polymer.

The stochastic description of a Rouse polymer is a
collection of monomers positioned at Rn (n¼1;2;...;N),

moving with a random Brownian motion coupled to a
spring force originating from the nearest neighbors,

�ðR1; . . . ;RNÞRouse ¼ �

2

XN
n¼1

ðRn � Rn�1Þ2; (1)

where the spring constant � ¼ 3kBT=b
2 is related to the

standard deviation b of the distance between adjacent
monomers [3] with kB the Boltzmann coefficient and T
the temperature. In units of kBT, we have � ¼ 3=b2 and
D ¼ 1=�, where � is the friction coefficient. In the
Smoluchowski’s limit of the Langevin equation [16], the
dynamics of monomer Rn is

dRn

dt
¼ �DrRn

�Rouse þ
ffiffiffiffiffiffiffi
2D

p dwn

dt
; (2)

for n ¼ 1; . . . ; N and each wn is an independent three-
dimensional white Gaussian noise with mean zero and
variance 1.
TheMFETC h�ei is themean time for the two endsRN ,R1

to come to a distance" < b, when the polymer evolves inside
a confining three-dimensional ball of radius A. To obtain an
asymptotic computation for the time h�ei, we will replace
the boundary on the polymer dynamics by a field of force
[Fig. 1(b)], thus changing the potential �Rouse in Eq. (2) by

�h ¼ �Rouse þ �

2

XN
n¼1

R2
n ¼ 1

2

XN�1

p¼0

ð�p þ �Þu2p; (3)

where �p ¼ 4�sin2ðp�=2NÞ, up are the coordinates in

which �Rouse [3] is diagonal, and the strength � is a free
parameter that will be adjusted to account for confinement
[17]. Our first result which approximates the MFETC is the
new asymptotic formula for the mean time h�hi that the two
end monomers of a Rouse polymer moving in a harmonic
potential meet. For " � b, it is
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h�hi � 21=2

4�"D

�
4�N

N2�þ �2�
þ 4ffiffiffiffiffiffiffi

��
p

�
�
�

2
� tan�1

�
2

ffiffiffiffiffiffiffiffiffiffi
�=�

q
tanð�=2NÞ

���3=2 þOð1Þ:
(4)

In contrast to all previous formulas obtained for free looping
polymer [6–11,18] [Fig. 2(d)], when N is large, h�hi does
not diverge to infinity, but converges to an asymptotic value

ð1=�"DÞð�= ffiffiffiffiffiffiffi
��

p Þ3=2. The criteria to choose the potential
strength� is that the rootmean square end-to-end distance of
the polymer in the potential field is equal to the square radius
of the confining ball domain A, that is

hðRNð�Þ � R1ð�ÞÞ2i ¼ A2 for N � 1: (5)

This equation can be solved explicitly using the averaging
over the Boltzmann distribution e��hdx and we obtain

� ¼ 12

A4=b2 þ 2A2
: (6)

The looping time for a polymer in a confined domain.—We
shall now explain how we extended the methodology devel-
oped for the looping of a free polymer [11] to derive formula
(4). We describe the dynamics of a polymer in confined
domain by Eq. (2) with the harmonic potential well. The
MFETC h�hi is computed from the relation

h�hi � 1

D��
0

; (7)

where ��
0 is the first eigenvalue of the operator L,

Lp ¼ D

N
ð�u0pðuÞ þ ru0ðru0�hpðuÞÞÞ þ

XN�1

k¼1

D�ukpðuÞ

þDrukðrukp�hpðuÞÞ; (8)

where u ¼ ðu0; . . . ;uN�1Þ 2 � ¼ R3N and the absorbing
boundary condition ispðuÞ ¼ 0 for u 2 @S�, where S� is the
closed polymer configuration space,

S� ¼
�
u 2 �s:t:

X
p odd

up cosðp�=2NÞ � "

2

�
: (9)

To compute the eigenvalue, we use the perturbation
formula [19]

��
0 ¼ �0

0 þ 4��
Z
S0

w2
�0
0

dVx; (10)

wherew�0
0
¼ jR3Nj�1=2

�h
is the eigenfunction associated with

�0
0 for the volume dVx ¼ e��hdxg, and dxg is the Euclidean

measure over S0 [obtained by taking " ¼ 0 in Eq. (9)]. With
�0
0 ¼ 0 and a direct computation, we obtain that

��
0 ¼ 4��ð2�Þ�3=2

"P
p odd !

2
p

KðN;�Þ
#
3=2

þOð�2Þ; (11)

where !p ¼ cosðp�=2NÞ and

KðN;�Þ ¼ X
p odd

!2
p

�p þ �
: (12)
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FIG. 2. The encounter of the end monomers for confined
Rouse polymer. (a) First encounter time distributions for a
Rouse polymer confined in a harmonic well for various polymer
lengths N ¼ 16, 32, 64 (left to right) with � ¼ 0:01b�2 and
" ¼ 0:01b. Note that one exponential (dashed line) is enough to
describe the process. (b) Brownian simulations (full line) are
compared to the MFETC computed [Eqs. (7) and (11)] by taking
the first order only in " (pointed line) and by taking into account
the second-order correction (dashed line) given by Eq. (18).
Fitting the parameter � to our simulation results gave ~� ¼ 10.
(c) First encounter time distributions for a polymer in a ball of
radius A ¼ 6b, for various polymer lengths (N ¼ 16, 32, 64 left
to right). A single exponential (dashed line) is sufficient to appro-
ximate the distribution over the entire range. (d) MFETC as a
function of the polymer length: Brownian simulations (full lines)
in spheres of radii A ¼ 4b, 6b with " ¼ 0:01b. We estimate the
MFETC (dashed lines) using the harmonics well approximation
[Eq. (7) with Eq. (11)], where � was fitted to the simulation
results �4 ¼ 0:0406b�2, �6 ¼ 0:0089b�2. The MFET is also
shown (points) for a freely moving polymer (Eq. (2) [11]).

ε ε

(a) (b)

FIG. 1 (color online). MFETC of polymer ends in a confined
domain and in a potential well. (a), (b) Schematic representation
of the encounter process between the ends of a polymer in a
confined ball and in a harmonic potential.
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Thus forN � 1, using relation (7), an asymptotic expansion
gives formula (4).

Second-order expansion of ��
0 in �.—The effect of the

boundary is seen in the second-order term of the expansion
of ��

0 as a function of � [20],

��
0 � 4��0

1�þ ð4�Þ2�0
2�

2 þOð�3Þ; (13)

with �0
2 ¼ ~�

R
S0

R
S0
Gðx; yÞdVxdVy, where ~� is a constant,

G is the Green’s function associated to the operator L.
It can be computed in terms of the unperturbed eigenfunc-
tions (w�0

i
) and eigenvalues (�i) by

Gðx; yÞ ¼ �X
i�0

w�0
i
ðxÞw�0

i
ðyÞ

�i

: (14)

We will use the following approximation:

�0
2 ¼ �~�

X
k�0

hw�0
k
jw�0

0
i2S0

�k

� �~�
hw�0

2
jw�0

0
i2S0

�2

; (15)

where

hw�0
i
jw�0

0
iS ¼

Z
S0

e��hðuÞw�0
i
ðuÞw�0

0
ðuÞdVg: (16)

Since the first nonzero eigenfunction (w�0
1;i
) is linear with

u1;i, the scalar product is zero and we approximate (15) by

computing the product associated with the second eigen-
value of p ¼ 1 in one of the spatial directions i. The
eigenfunction is given by the second Hermite polynomial,

w�0
2;i
¼ ð2jR3Nj�h

Þ�1=2ðð�1 þ �Þðu1;iÞ2 � 1Þ: (17)

In summary, we obtain that

��
0 ¼

"

8�1=2

�
N

KðN;�Þ
�
3=2 � 2�8��1"2 ~�N3

ð�1 þ �Þ3KðN;�Þ5 : (18)

For large N, KðN;�Þ�N=4
ffiffiffiffiffiffiffi
��

p
and �1 ¼ 4�sin2ð�=2NÞ.

Finally, using (7) for small " and fixed N, we obtain a
refined approximation compared to (4) for the MFETC,

h��i � 23�1=2

D"

�
KðN;�Þ

N

�
3=2 þ ~�ð16�sin2ð�=2NÞ þ�Þ�3

DKðN;�Þ2 :

Contrary to the looping time in free space, where h��i ¼
a1N

3=2="þ a2N
2 [11] (a1, a2 are constants) for N � 1,

where the N2 term dominates, in the confined case, only
the first term is increasing with the length N. Indeed, for a
confined polymer, the two ends are bounded by the diame-
ter of the domain.

To validate the Poissonian nature of looping in confined
domain, we further investigated the survival probability
PðtÞ that a loop is not formed before time t. The first
encounter time (FET) distribution pðtÞ is the derivative of
P and can be obtained by expanding the probability density
function solution of ð@p=@tÞ ¼ LðpÞ using an eigenfunc-
tion expansion

pðtÞ ¼ X1
i¼0

Cie
���

i Dt � e���
0
Dt; (19)

where Ci are coefficients. Using Brownian simulations, we
obtained the FET of the two ends of a polymer in a
harmonic well [Fig. 2(a)]. Interestingly, unlike the FET
distribution for a free polymer, pðtÞ is well approximated
by a single exponential, even for long polymers, showing
that the higher exponential terms [Eq. (19)] do not con-
tribute. We conclude that the encounter time for a polymer
in a harmonic well is Poissonian. Moreover, as observed
from matching of the theoretical formula (4) and Brownian
simulations for the MFETC in a potential well [Fig. 2(b)],
the first-order correction in " is a very satisfactory and
stable approximation even for large N and small ".
Brownian simulations of polymer looping in a confined

domain.—To validate formula (4) for a polymer looping
in a confined domain, we used Brownian simulations of a
Rouse polymer in confining spheres [Fig. 2(d)] of different
radii and first compared it with the formula in a free
domain. Although for small polymer lengths, there is
almost no difference between confined and nonconfined
looping time, for long polymers, the MFETC reaches an
asymptotic value, which depends on the radius of the
domain. Interestingly, when the interacting monomers are
not at the ends of a polymer chain, the MFETC is reduced
in a range between 5% and 30% [26], due to the interaction
of the additional monomers with the boundary [17].
Finally, the distribution of arrival time [Fig. 2(c)] for
short and long polymers can be approximated by a single
exponential, confirming that the looping event is almost
Poissonian. This is in contrast with looping in the bulk,
where for longer polymers, a second exponential is neces-
sary. We compared the MFETC as computed from Eq. (7),
taking only the first order in " [Eq. (11)], where the
potential strength � was fitted to the Brownian simulation.
The calibration formula (6) gives very similar values to the
fitted ones. For A ¼ 4b, 6b, the fitted values are �fit;4 ¼
0:0406b�2, �fit;6 ¼ 0:0089b�2, respectively, while the

calibration formula (6) gives �cal;4 ¼ 0:0417b�2, �cal;6 ¼
0:0088b�2. We conclude that using the fitting procedure
(6), it is possible to access the radius of the confined
sphere.
DNA looping inside nuclear territories and analysis of

chromosome capture data.—The mean first encounter time
or looping time of a Rouse polymer in a confined domain
increases with the polymer length to an asymptotic value,
which depends on the size of the confined domain. We now
estimate the mean encounter time for a chromosomal locus
to find another one inside the convex envelope of the chro-
mosome, also called chromosome territory [21] [Fig. 3(a).
This territory results from the self-avoiding interactions
with other chromosomes. Consequently, a chromosome
cannot penetrate the territory of another one [22]. Inside
a territory, the MFETC between two loci increases with
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their distance along the strand [Fig. 3(b) and 3(c)]
and depends on the size of the confinement. We model
the chromatin fiber as a Rouse chain composed of N
monomers and choose the standard deviation of the bond
length to be b ¼ 30 nm, representing the 30-nm fiber,
and neglect the strand-bending elasticity. Each monomer
represents 3.2 kbps along the chromosome [23], and
the diffusion coefficient of a monomer is D ¼ 10�
103 nm2= sec [24]. We choose an absorbing radius of " ¼
5 nm. Using formula (7) and taking only the first-order
term in " [Eq. (11)] and the calibration formula (6) for the
strength of the confining potential, we found that the
MFETC strongly depends on the confinement radius (chro-
mosome territories) and can vary between 8 sec for a small
domain of radius A ¼ 150 nm to about 5 min for a large
domain of radius A ¼ 500 nm. We will now show that we
can use this approach to extract the effective confinement
radius from measured looping distribution. The four di-
mensional capture (4C) method identifies chromosomal
interactions genome wide by coupling chromosome con-
formation capture-on-chip. This method captures chromo-
some conformation in vivo by ligating close loci together.
One example is the 4C data set of the yeast Saccharomyces
cerevisiae [2]. The method reveals the encounter probabil-
ities between chromosomal sites at steady state. The fre-
quency of encounter is inversely proportional to the
MFETC; thus, the encounter frequency can be obtained
from the MFETC formula. Interestingly, although the

MFETC can vary depending on the position along the
polymer chain of the monomers that will encounter, the
normalized rate (the reciprocal of the MFETC divided
by its integral over the length) of monomer interaction
(as experimentally measured) is first independent on the
encounter rate radius " (as it cancels out in the normaliza-
tion). Second, the encounter probability depends only on
the distance between two monomer pairs along the chain
and is in fact not much affected by the remaining polymer
tails located beyond them [26].
Chromatin can be organized in higher-order structure

such as stable separated blobs that result from local specific
interactions. The current stage of the analysis model does
not take into account the effects due to these higher-order
structures in the chromosome. Another limitation of the
present model when applied to yeast is due to the Rabl
chromosomal configuration where the centromeres are
connected to the mitotic spindle body. Indeed, this inter-
action breaks the radial symmetry. Thus, by choosing a
locus distant from the centromere, we shall overcome this
difficulty. Based on these considerations, we now apply the
above approach to 4C data in yeast, where higher-order
structures are not dominant. We remark that the radius of
the yeast nucleus is fairly small (1 	m) and the confine-
ment effect is not related to the chromosome territories but
is certainly due to some interaction with the nuclear mem-
brane. We used the encounter probability data [2] for the
locus at position 99 kbp from the right end of chromosome
II in the yeast [Fig. 3(d)] and fitted them with the encounter
formula [Eqs. (7) and (11)], where � is the only free
parameter. We found that � ¼ 3:91� 10�6 nm�2. Using
formula (6), we obtain an effective confinement radius of
A ¼ 230 nm, representing a subdomain of the yeast nu-
cleus [25]. Moreover, as predicted by our model, for large
distances along the strand, the encounter probability
reaches an asymptotic value rather than going asymptoti-
cally to zero [Fig. 3(d)]. This shows that the encounter of
loci pair is affected by nuclear confinement.
An extension of the present polymer model beyond the

Rouse linear chain would be important to account for
higher-order organization of the chromosome. Finally,
geometrical constraints of chromatin loci are classically
obtained by single-particle tracking of a fluorescent spot
on the chromatin. Extracting spatial information from
chromosome capture data, which can later be compared
to single-particle tracking experiment, is now possible. In
this way, results of those two very different methods can
be compared.
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