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We demonstrate that the pattern forming partial differential equation derived from the auxin distribution

model proposed by Meyerowitz, Traas, and others gives rise to all spiral phyllotaxis properties observed

on plants. We show how the advancing pushed pattern front chooses spiral families enumerated by

Fibonacci sequences with all attendant self-similar properties, a new amplitude invariant curve, and

connect the results with the optimal packing based algorithms previously used to explain phyllotaxis.

Our results allow us to make experimentally testable predictions.
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Introduction.—The arrangement of phylla (flowers,
seeds, stickers, bracts, . . .) on plants and their surface
morphologies have intrigued and mystified scientists
from the time of Kepler. A special challenge has been to
understand Fibonacci spiral phyllotaxis in which, on many
plants, phylla lie on families of visible clockwise and
anticlockwise spirals. Counting spirals in each family,
called parastichies, results in numbers that follow a
Fibonacci progression. Many explanations (Van Iterson
[1], Levitov [2] Douady and Couder [3], Atela, Golé, and
Hotton [4]) have been teleological in nature and result in
discrete models based upon the rules of Hofmeister [5] and
Snow and Snow [6] which reflect optimal packing strat-
egies. Mechanistic explanations, the ‘‘hows’’ rather than the
‘‘whys,’’ are given in the works of Green, by Meyerowitz,
Traas, Kuhlemeier, and Reinhardt, and by Newell, Shipman
and colleagues. They have focused on pattern forming
physical and biochemical mechanisms: the buckling of
the plant’s tunica [7], the triggering of auxin inhomogene-
ities by PIN1 protein transport in cells [8] near its shoot
apical meristem (SAM) or combinations thereof [9].

In this Letter, we report on recent numerical results
which lend credence to the latter view that almost all
features of phyllotactic configurations are the result of a
pattern forming front whose origin is a combination of
instabilities described above. What is even more surprising
but nevertheless gratifying is that the locations of the
maxima of the auxin field, which can act as phyllum
initiation sites, coincide with the point configurations gen-
erated by the discrete models of the teleological approach.
This suggests that pattern forming systems may provide a
new tool for addressing optimal packing challenges. In
short, instability generated patterns may be the mechanism
by which plants and other organisms can pursue optimal
strategies.

The model we use derives from a continuum approxi-
mation to the cell dynamics described in [8]. It assumes
that the main contribution comes from the instability of a
uniform auxin concentration due to reverse diffusion. This
occurs when PIN1 proteins move from the cell interior to

the cell wall, where they orient to drive auxin with, and not
against, its concentration gradient. The model also makes
the simplifying assumption that the surface deformation is
slaved to the auxin concentration field via the stress-strain
relation, which relates stress to the difference of the total
and auxin (growth) induced strains. The resulting partial
differential equation is, for certain coefficient choices, a
gradient flow given by
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where u is the fluctuation in auxin concentration about
its mean value, t is time, and the system has been scaled
so that the most linearly unstable wavelength is 2�.
The parameter � captures the amount by which reverse
diffusion driven by PIN1 transport overcomes ordinary
diffusion and other loss effects. The parameter �measures
how auxin concentration depends on PIN1 distribution.
We study solutions of Eq. (1) in geometries defined by

surfaces of revolution. In this Letter we focus on a planar
disc geometry, as is the case on a sunflower head.
Sunflowers are formed in two stages. In the first, flowers
are initiated in an annulus surrounding the SAM and, as the
plant grows, the radius of this annulus increases. As a
result, the flower configurations evolve into spiral families.
At a certain point, however, the SAM undergoes a phase
transition and the region on which the seeds form begins
to decrease in radius. During this process, the seeds are
laid down annulus-by-annulus along an annular front of
decreasing radius, and furthermore, each annular pattern
remains at the radius at which it was formed. Thus any
local optimal packing property which the pattern manifests
when it is first laid down remains visible.
To simulate this situation, we initiate a spiral pattern

with parastichy numbers M, N (the parastichies in the last
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set of flowers to be laid down in the first phase which sets
the outer boundary condition for the seed phase) in an
annulus on the outer boundary r ¼ Mþ N of the disc.
The initial conditions are constructed by taking an approxi-
mately hexagonal (three-mode) small amplitude solution
of Eq. (1) in that region and propagating it on a cylinder of
that radius until it reaches a stable nonlinear fixed point.
We then use Eq. (1) to propagate this pattern initiated in
an annular region of the outer boundary into the interior
r <Mþ N in which the unstable solution u ¼ 0 is the
initial field.

Results.—In order to classify and understand the pattern
that emerges, we decompose the final fixed-time signal
uðr; �Þ into circumferential modes and write it in terms
of the amplitude and radial phase of each mode as

uðr; �Þ ¼ X
j

amj
ðrÞ exp½ið�mj

ðrÞ �mj�Þ� þ ðc:c:Þ

for all integers mj. Define the radial wave number by

‘mj
ðrÞ � ��0

mj
ðrÞ. Then, from the sets famj

ðrÞg and

f‘mj
ðrÞg we deduce the local structure (in r) of the signal.

We find that for any choice of initiating integers M, N, the
subsequent final signal has its principal support on that
subset of circumferential wave numbers N;M;
N�M;2M�N;2N�3M;... generated by the Fibonacci
rule. Here we show the results for M ¼ 89, N ¼ 144 but
in [10] display the corresponding results for other pairs
including M ¼ 47, N ¼ 76 which generate the Lucas
sequence. The results are also robust for a large open set
of choices for �, � which result in pushed fronts. Here we
take � ¼ 0:001, � ¼ 3.

Figure 1 is a pseudocolor plot of u on the inner disc
r < 89 at the time the front has reached r ¼ 13. We note

that the visible parastichy numbers decrease with r, and
that the transitions between alternating hexagonal and
rhombic shapes occur without defects. The radial wave
numbers are continuous. Earlier analyses [9], using near-
onset amplitude expansions, identified the fixed points
corresponding to these shapes but did not prove that the
pattern in an annulus at one radius evolves smoothly to that
in its neighbor. The partial differential equation simulation
does.
Figure 2 shows two measured quantities alongside the

front speed � that is selected by Eq. (1). The local energy
density � is the energy (2) in a narrow annulus centered at
radius r, scaled by the area of the annulus. The local
packing efficiency 	 is the area fraction of the annulus
covered by nonoverlapping equal discs of maximal radius
centered at the maxima of the signal. We note that � is
minimum at the radii where hexagons dominate and maxi-
mum for rhombi. Conversely, for both 	 and � the situation
is reversed, with the former being due to the fact that
hexagons result in better packing than rhombi. The graphs
of � and 	 are testable predictions, as the front in a devel-
oping sunflower head can be experimentally followed [11].
Figure 3 reveals that the evolved pattern is dominated

by modes whose circumferential wave numbers belong
to the set F ¼ f1; 2; 3; 5; 8; 13; 21; 34; . . .g defined by the
Fibonacci rulemjþ1 ¼ mj þmj�1. The only other nonzero

amplitudes, which have much smaller values, are those
corresponding to second harmonics and those generated
by the ‘‘irregular’’ Fibonacci rule mjþ1 ¼ mj þmj�2.

Figure 4 shows that the amplitudes famj
g for fmjg ¼ F

lie on an invariant curve which exactly captures the

self-similar property amjþ1
ðr’Þ ¼ amj

ðrÞ, where ’ ¼ ð1þffiffiffi
5

p Þ=2 is the golden number. Note that in any annulus, there
are only three or at most four (two dominant, two

FIG. 1 (color online). A pseudocolor plot of uðr; �Þ on the
inner section r < 89 of a pattern initiated at r ¼ 233 with para-
stichy numbers M ¼ 89 and N ¼ 144. A movie [15] may be
found in the Supplemental Material.
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FIG. 2 (color online). The front speed �, local energy density
�, and local packing efficiency 	 for 8< r < 144. The vertical
axis has been rescaled to indicate relative variation from the
mean value of each of these quantities.
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subdominant) modes present corresponding to the
observed hexagonal and rhombic states, respectively. As
r decreases, the amplitudes of each mode slide continu-
ously along this curve. This result is completely new and
has no analogue in discrete models of phyllotaxis. For
example, suppose that points B, C, and D correspond to
amplitudes a21, a13, and a8, respectively. Scaling the radius
by ’ would yield the same configuration except with B, C,
and D corresponding to a13, a8, and a5. We also confirm
that the radial wave numbers f‘mj

g for fmjg ¼ F obey the

self-similar property ‘mjþ1
ðr’Þ ¼ �‘mj

ðrÞ. The invariant

curve is sharp down to values as low as r ¼ 8 with para-
stichies 3, 5 or down to that radius where the circular
eigenfunctions of the Laplacian can be well approximated
by exp½�i

R
‘mj

ðrÞdr� imj�� in the limit r large, mj=r

finite. For other choices of starting integers M, N on the

outer boundary, the invariant curve has the same shape but
is shifted by a calculable amount.
Values of fmjg and f‘mj

g can be used to determine the

positions of the maxima, since they occur where the phase
�mj

ðrÞ �mj� is an integer multiple of 2� simultaneously

for all active modes [10]. Because ‘mj
ðrÞ changes slowly

compared to the distance between maxima, we may calcu-
late from the radial wave numbers of those modes
dominant at a particular r the local radial 
 and angular
� distances between maxima that are laid down consec-
utively. In botanical terms, these are called the plasto-
chrone difference and divergence angle, respectively.
We are now able to connect our results directly to the

point configurations generated by discrete models of
phyllotaxis [3,4]. The lattices which are the fixed points
of the discrete dynamical systems describing these
‘‘locally optimal’’ point configurations have values of
(�, 
) which lie on, or near, a branching curve first
described by Van Iterson. We overlay our results on the
Van Iterson diagram in Fig. 5, where we observe a remark-
able coincidence. The maxima of the pattern formed by a
pushed front governed by Eq. (1) coincide almost exactly
with those point configurations of the discrete approach.
Discussion.—To conclude, we address four questions

and pose several open challenges. First, can we understand
why, starting from a pattern characterized by integersM,N
in the neighborhood of the outer boundary r ¼ Mþ N,
only those modes having circumferential wave numbers
N;M;N �M; 2M� N; 2N � 3M; . . . generated by the
Fibonacci rule dominate the signal? The evidence provided
by the data yields the key clue. Patterns in gradient flows
choose configurations with energetically preferred length
scales. In Fig. 6, we draw the paths followed by all wave
vectors as r decreases to r ¼ 8. Only those circumferential
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FIG. 3 (color online). The maximum values of the amplitude
for all circumferential wave numbers 8 � m � 89.
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FIG. 4 (color online). The invariant amplitude curve for am-
plitudes famj

g with fmjg ¼ F . A movie may be found in the

Supplemental Material [16].
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FIG. 5 (color online). The values of 
 and � given by the local
approximation at each radius. The shaded lines are the Van
Iterson diagram, with selected parastichy numbers indicated.
Inset is detail of the data for small 
.
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wave numbers generated by the Fibonacci rule approach
the energetically preferred wave number k0, here 1.11,
close to, but a nonlinear modification of, the linearly
preferred value of unity. The fact that the Fibonacci modes
trace the same path reflects the self-similar property men-
tioned earlier. Moreover, as the pattern moves inward, the
next dominant mode in the sequence is principally gener-
ated by quadratic interactions reflecting the sign reversal
broken symmetry. Effectively this means the correspond-
ing wave vectors add pairwise. As r decreases, the succes-
sively generated modes kN�M;k2M�N;k2N�3M; . . . move
toward the preferred wave number k0. Their corresponding
amplitudes, the pattern order parameters, are therefore
dominant.

Second, why do Fibonacci patterns consist of a combi-
nation of hexagons and rhombi? In planar geometries,
hexagonal configurations dominate because at every loca-
tion, the quadratic interaction of two modes expðikj � ~xÞ,
j ¼ 1, 2, jkjj ¼ k0, 120

� apart in angle, generates a mode

with wave vector k1 þ k2 which also lies on jkj ¼ k0.
Plant patterns do their best to be hexagonal. But because
they are laid down, annulus by annulus, by inwardly or
outwardly moving fronts, the hexagonal pattern will only
fit the circumference at certain radii. In between, only two
wave vectors can be close to jkj ¼ k0 and this gives rise to
rhombic structures. In the Supplemental Material, the
movie [12] shows the evolution of the wave vectors
k5;k8;k13;k21; . . . alternating between hexagonal and
rhombic structures.

Third, why pushed fronts? They are important because
the front characteristics are dictated by the pattern behind
the front. Bias from the pattern in the neighboring annulus
where the pattern has just been laid down affects the choice
of (as it turns out weakly unstable) fixed points

corresponding to rhombi which have strongly attracting
stable manifolds and weak repelling ones. They also syn-
chronize the front speed of the several modes (three or two)
involved in the pattern at any annulus. If the front were
pulled, then each of these modes will propagate at a speed
depending principally on its radial wave number. The
pattern would lose synchrony.
Fourth, we address the nature of the fixed point which

represents the Fibonacci pattern shown in Fig. 1. When the
region is large enough, the local geometry looks planar and
the system should relax to planar hexagonal patches with
defects. Careful long time simulations show that the
Fibonacci pattern is long, but not infinitely long-lived.
For a case shown in the Supplemental Material [13], as
the front evolves along the stable manifold of the Fibonacci
pattern, the energy (2) decreases 1890 units in 75 time
units. The pattern remains nearly stationary for another
250 time units, after which the energy has only decreased 2
additional units. Then we see a further decrease which is
manifested by reorganization of the maxima and eventu-
ally the appearance of defects in the rhombic regions which
are the least optimally packed. This is consistent with our
observations when we evolve the pattern on a cylinder of
fixed radius. The spiral hexagonal solutions are stable.
The rhombic solutions are susceptible to Eckhaus-like
instabilities. Thus, while Fibonacci patterns would seem
to be universal in situations where the pattern is laid
down annulus by annulus, they are in fact long-lived
transients. In plants, however, there may be additional
mechanisms so that phylla, once initiated, become rooted
and thereafter move with the growing plant.
We end this Letter with several challenges. Will the

coincidence of the maxima of a pushed pattern-forming
front and that point configuration generated by locally
optimal packing algorithms be still valid in three dimen-
sions? Can one associate a corresponding pattern forming
system with every optimal packing challenge? It is inter-
esting that a similar connection has been reported in
another context [14]. Finally, we ask: How might one be
led to anticipate from a priori reasoning that the pushed
pattern front solutions of Eq. (1) have so many invariants
and self-similar properties when there is no obvious simple
scaling transformation of the original Eq. (1)?
This work was supported by NSF grant DMS 0202440.
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