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The passive mechanical response of skeletal muscles at fast time scales is dominated by long range

interactions inducing cooperative behavior without breaking the detailed balance. This leads to such

unusual ‘‘material properties’’ as negative equilibrium stiffness and different behavior in force and

displacement controlled loading conditions. Our fitting of experimental data suggests that ‘‘muscle

material’’ is finely tuned to perform close to a critical point which explains large fluctuations observed

in muscles close to the stall force.
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Active behavior of skeletal muscles is associated with
time scales of about 30 ms [1]. At shorter times (�1 ms)
muscles exhibit a nontrivial passive response: if a tetanized
muscle is suddenly extended, it comes loose, and if it is
shortened, it tightens up with apparently no involvement of
metabolic fuel Adenosine triphosphate (ATP) [2]. This
unusual mechanical behavior, associated with the unfold-
ing of the attached myosin cross-linkers (cross-bridges),
qualifies muscles as metamaterials [3]. As we argue below,
an important factor in this behavior is the dominance of
parallel connections with multiple shared links entailing
cooperative effects; see Fig. 1. Similar mean-field coupling
can be found in many hierarchical biological systems [4];
in particular, it plays a crucial role in cell adhesion, where
individual binding elements interact through a common
elastic background [5].

Interaction-induced synchronization during muscle con-
tractions reveals itself through macroscopic fluctuations
and spatial inhomogeneities [6]. In ratchet-based and che-
momechanical models, such collective behavior is usually
attributed to breaking of the detailed balance [7], with long
range interactions entering the problem implicitly as a
force dependence of the chemical rates [8]. However, the
cooperative behavior of myosin cross-bridges can be
detected during short time force recovery [9], and therefore
the origin of synchronization should be within reach of
models disregarding disequilibrium and activity. In this
Letter, we show that already equilibrium response of
‘‘muscle material’’ is associated with highly synchronized
behavior at the microscale which explains its unusual
passive response.

In particular, we show that an order-disorder phase
transition is displayed by the celebrated Huxley-
Simmons (HS) model [2] if, instead of physiological iso-
metric loading conditions (length clamp) also known as a
hard device, one considers isotonic (load clamp) loading
conditions or a soft device. While a considerable difference
in behavior of a muscle loaded in these two different ways
can be deduced from experimental data [10], the origin of

the disparity has been so far unexplained. We argue that
behind it is a nonequivalence of equilibrium ensembles
ubiquitous in systems with long range interactions [11].
Most remarkably, we find that a careful parameter fitting

places the actual skeletal muscle almost exactly into a
ferromagnetic Curie point. This agrees with the observa-
tion [2] that the effective stiffness of skeletal muscles
associated with fast force recovery is close to zero in the
state of isometric contractions and strongly suggests that
muscles are finely tuned to perform near marginal stability.
Other experimentally observed manifestations of criticality
include kinetic slowing down and large scale macroscopic
fluctuations near the stall force conditions [9].
We demonstrate the robustness of our predictions by

comparing the HS model, which we interpret as a hard
spin description, with a regularized (RHS) model where
filament elasticity is taken into consideration and conven-
tional spins are replaced by elastic snap springs.
The HS model.—We consider a prototypical model of a

half-sarcomere with N attached cross-bridges arranged in
parallel [2]; at time scales of fast force recovery, N can be
considered constant [2,10]. Each cross-bridge is modeled
as a series connection of a bistable spin unit and a linear
(shear) spring; see Fig. 2. We use dimensionless variables
with the power-stroke size a as a unit of displacement and
�a2 as the unit of energy, where � is the stiffness of the
series spring. Then the spin variable takes values xi ¼ 0

FIG. 1. Schematic structure of the three layers of organization
inside a sarcomere: (a) global architecture with domineering
parallel links; (b) structure of an elementary contractile unit
shown in more detail in Fig. 2; (c) individual attached cross-
bridge represented by a bistable element in series with a shear
spring.
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(pre-power-stroke state) and xi ¼ �1 (post-power-stroke
state), and the total energy per particle in the hard device is
vðx; zÞ ¼ ð1=NÞP½ð1þ xiÞv0 þ ð1=2Þðz� xiÞ2�, where v0

is the energetic bias of the pre-power-stroke state. In this
formulation, the HS model describes the simplest para-
magnetic spin system.

At finite temperature �, the equilibrium behavior of
this system is characterized by the free energy per particle

f̂ðz; �Þ ¼ �½1=ðN�Þ� lnR exp½��Nvðx; zÞ�dx, where�¼
�a2=ðkb�Þ. At fixed p ¼ �ð1=NÞP xi, representing the
fraction of cross-bridges in the post-power-stroke state,
the macroscopic (N ! 1) free energy takes the form

f ¼ p

�
1

2
ðzþ 1Þ2

�
þ ð1� pÞ

�
1

2
z2 þ v0

�
þ 1

�
SðpÞ;

where SðpÞ ¼ p logðpÞ þ ð1� pÞ logð1� pÞ. The func-
tion fðpÞ is always convex with a minimum at p̂ðz; �Þ ¼
1=2� ð1=2Þ tanh½ð�=2Þðz� v0 þ 1=2Þ�. The equilibrium
tension per cross-bridge is then t ¼ ðzþ p̂Þ, which is
exactly the formula found by Huxley and Simmons. The
equilibrium free energy is
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and the susceptibility (stiffness) is t0ðzÞ ¼ f̂00ðzÞ. The func-
tion f̂ðzÞ is convex for �< 4 and is nonconvex for �> 4
exhibiting a range with negative equilibrium stiffness
(metamaterial behavior). If we take the values from [2],
a ¼ 8 nm and �a2=2 ¼ 2kb�, we obtain � ¼ 4, which
corresponds to zero stiffness at the state of isometric
contractions z0 ¼ v0 � 1=2.

In the soft device setting, not studied by Huxley and
Simmons, the energy becomes wðx; z; tÞ ¼ vðx; zÞ � tz,
where t is the applied force per particle. Now the variable
z plays the role of an internal parameter whose adiabatic
elimination produces a Curie-Weiss mean-field potential
depending on ðP xiÞ2. The equilibrium Gibbs free energy
is now ĝðt; �Þ ¼ �½1=ðN�Þ� lnR exp½��Nwðx; z; tÞ�dxdz.
At fixed p we obtain in the thermodynamic limit

g ¼ � 1

2
t2 þ ptþ ð1� pÞv0 þ 1

2
pð1� pÞ þ 1

�
SðpÞ;

where the ‘‘regular solution’’ term is responsible for coop-
erative (ferromagnetic) behavior.
In Fig. 3, we show the position of the minima of gðpÞ

when t is chosen to ensure that in the paramagnetic phase
p̂ðt; �Þ ¼ 1=2. In the disordered (high temperature) state
all cross-bridges are in random conformations, while in the
ordered (low temperature) state the system exhibits coher-
ent fluctuations between post-power-stroke and pre-power-
stroke configurations. These fluctuations describe temporal
microstructures responsible for the plateau in the force-
elongation relation ẑ ¼ t� p̂, where p̂ is a solution of
t� p̂þ 1=2� v0 þ ð1=�Þ ln½p̂=ð1� p̂Þ� ¼ 0.
The equilibrium Gibbs energy is concave because

ĝ00ðtÞ ¼ �1� �Nhðp� p̂Þ2i � 0, so in the soft device
the stiffness is always positive. Since in the hard device
the stiffness is sign indefinite, the two ensembles are not
equivalent. This is expected for systems with strong long
range interactions that are inherently nonadditive [11,12].
Negative stiffness in the hard device HS model has been
known for a long time [2,8,13,14]; however, it was not
previously associated with the particular internal architec-
ture of muscle material.
As we have already mentioned, the original HS fit of

experimental data [2] places the system exactly into the
critical state (Curie point). In this state the correlation
length diverges and fluctuations become macroscopic,
which is consistent with observations at stall force con-
ditions [6,15]. This suggests that skeletal muscles, as many
other biological systems, may be tuned to criticality. The
proximity to the critical point would then be the result of
either evolutionary or functional self-organization. The
marginal stability of the critical state allows the system
to amplify interactions, ensure strong feedback, and
achieve considerable robustness in front of random pertur-
bations. In particular, it is a way to quickly switch back and
forth between highly efficient synchronized stroke and stiff
behavior in the desynchronized state.
The ensemble nonequivalence in the HS model has also

a kinetic signature. Experiments on quick recovery reveal

FIG. 2. Elementary contractile unit. (a) Energy of the bistable
(power-stroke) element: HS model (thin line) and RHS model
(thick line); (b) N cross-bridges in hard device. In the HS model,
�0, �1, �f ¼ 1 and y ¼ z.

FIG. 3. Bifurcation diagram for the HS model placed in a soft
device showing synchronized states (A and C) and a disordered
state (B). Solid lines shows minima of the Gibbs free energy at
t ¼ 1. The critical point is located at � ¼ 4.
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that muscle fibers react to load steps much slower than to
length steps [2,10]. This agrees with our model, where
coherent response (in isotonic conditions) is always slower
than disordered response (in isometric conditions).

Indeed, by using Kramers approximation Huxley and
Simmons obtained in a hard device the kinetic equation
_hpi ¼ �k�hpi þ kþð1� hpiÞ, where hpi is the average

over ensemble. The constants kþ, k� satisfy the detailed
balance kþ=k� ¼ exp½��ðz� v0 þ 1=2Þ�, and the recov-
ery rate is 1=� ¼ k�f1þ exp½��ðz� v0 þ 1=2Þ�g. In a
soft device we may use the same model with z ¼ t� hpi,
which accounts for force-dependent chemistry and intro-
duces nonlinear feedback. The characteristic rate around a
given state hpi is then 1=� ¼ k�f1þ ½1� �ð1� hpiÞ��
exp½��ðt� hpi � v0 þ 1=2Þ�g. When hpi is small,
t� hpi> z, and the relaxation in a soft device is slower
than in a hard device. In Fig. 4, we show the rates obtained
from the HS model; in the case of a soft device, the non-
linear kinetic equation was solved numerically for the
duration 10 ms. We see that in a soft device the rates are
indeed slower than in a hard device; however, the experi-
mental measurements are not matched quantitatively.

The RHS model.—To test the robustness of the HS
mechanism of synchronization and to achieve quantitative
agreement with kinetic data, we now consider a natural
regularization of the HS model. First, following [14] we
replace hard spins by soft spins described by a piecewise
quadratic double well potential—see Fig. 2(a)—

uRHSðxÞ ¼
8<
:

1
2�0ðxÞ2 þ v0 if x > l;

1
2�1ðxþ 1Þ2 if x � l;

where �1 ¼ �1=�, �0 ¼ �0=�. Second, we introduce a
mixed device (mimicking myofilament elasticity [7,16])
by adding to our parallel bundle a series spring. The
resulting energy per cross-bridge in a hard device is

vðx; y; zÞ ¼ 1

N

XN

i¼1

�
uRHSðxiÞ þ 1

2
ðy� xiÞ2

�
þ �f

2
ðz� yÞ2;

where y is a new internal variable and �f ¼ �f=ðN�Þ; see
Fig. 2(b). It is clear that our lump description of filament
elasticity misrepresents short range interactions [17];
however, this should not affect our main results [18].
To study the soft device case we must again consider the

energy wðx; y; z; tÞ ¼ vðx; y; zÞ � tz, where t is the applied
force per cross-bridge. A transition from hard to soft
ensemble is made by taking the limit �f ! 0, z ! 1
with �fz ! t. At finite �f the RHS model can be viewed

as a version of the mean-field ’4 model studied in [4,11].
The HS model is a limiting case of the RHS model with

�1;0 ! 1 and �f ! 1. The first of these limits allows one

to replace continuous dynamics by jumps and use the
language of chemical kinetics; however, it also erases
information about the barriers; see [14]. The second limit
eliminates the Curie-Weiss (mean-field) interaction among
individual cross-bridges at fixed z, and that is why the
synchronized behavior was overlooked in [2].
Equilibrium behavior in the RHS model can be again

described analytically, because it is just a redressed HS
model. In the limit �f ! 1 the function fðpÞ is convex as

in HS model, while at finite values of �f it is now non-

convex. This shows that in the RHS model the account of
filament elasticity brings about phase transition (and bista-
bility) also in the hard device.
The bistable nature of the macroscopic free energy in

both soft and hard devices implies that the system can be in
two coherent states, and therefore within a large set of half-
sarcomeres one should expect observable spatial inhomo-
geneities. This prediction is in agreement with ubiquitous
‘‘off-center’’ displacements of M lines recorded during
isometric contractions [6].
The phase diagram showing the role of filament elastic-

ity in a hard device is shown in Fig. 5. The dependence of
the critical temperature on �f suggests that actomyosin

systems can control the degree of cooperativity by tuning
the internal stiffness; likewise, variable stiffness of the
loading device may be used in experiments to either acti-
vate or deactivate the collective behavior. Notice that the
realistic choice of parameters again selects a near critical
state; the exact criticality is compromised since the sym-
metry between the pre- and post-power-stroke states is now
broken (as �1 � �0) and the phase transition becomes
weakly first order; see Fig. 6.
A behavior similar to our synchronization has been also

observed in the models of passive adhesive clusters, where
the elastic feedback appears as strain- or force-dependent

FIG. 4. Recovery rates in hard and soft devices. Symbols:
Postprocessing of experimental data; see [10]. Open symbols,
hard device; filled symbols, soft device. Dashed lines: HS model
in hard (h) and soft (s) devices; parameters are taken from [2].
Solid lines: RHS model in hard (h) and soft (s) devices obtained
from stochastic simulations; parameters have been fit to experi-
mental data: �1 ¼ 0:41, �0 ¼ 1:21, �f ¼ 0:72, l ¼ �0:08,

N ¼ 112, � ¼ 52 (� ¼ 2 pN=nm, a ¼ 10 nm, � ¼ 277:13 K),
z0 ¼ 4:2 nm=hs.
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chemistry [5]. Given that the two systems exhibit almost
identical cooperative behavior, we expect criticality to be
also a factor in the operation of focal adhesions.

The two ensembles, soft and hard, remain inequivalent
in the RHS model. Thus, in the soft device the equilibrium
Gibbs free energy ĝ is concave since ĝ00ðtÞ ¼ �1=�f �
�Nhðy� hyiÞ2i � 0, which means that the stiffness is

always positive. Instead in the hard device f̂00ðzÞ ¼ �f½1�
�Nhðy� hyiÞ2i�, and the stiffness can be both positive and
negative. While negative stiffness should be a character-
istic feature of realistic half-sarcomeres (see Fig. 7), it has
not been observed in experiments on whole myofibrils. The
reason may be that in myofibrils a single half-sarcomere is
never loaded in a hard device. The effective dimensionless
temperature may also be higher because of the quenched
disorder, and the stiffness may be smaller due to nonlinear
elasticity. One can also expect the unstable half-
sarcomeres to be stabilized actively through processes
involving ATP hydrolysis [19].

To study kinetics in the RHS model we perform direct
numerical simulations by using a Langevin thermostat. We
assume that the macroscopic variables y and z are fast and

are always mechanically equilibrated which is not an
essential assumption. The response of the remaining vari-

ables xi is governed by the system dxi ¼ bðxiÞdtþffiffiffiffiffiffiffiffiffiffiffiffi
2��1

p
dBi, where the drift is bðx; zÞ ¼ �u0RHSðxiÞ þ

ð1 þ �fÞ�1ð�fz þ N�1
P

xiÞ � xi in a hard device

and bðx; tÞ ¼ �u0RHSðxiÞ þ tþ N�1
P

xi � xi in a soft de-

vice. In both cases the diffusion term dBi represents a
standard Wiener process.
In Fig. 7, we show the results of stochastic simulations

imitating quick recovery experiments [2]. The system,
initially in thermal equilibrium at fixed z0 (or t0), was
perturbed by applying fast (�100 �s) length (or load)
steps with various amplitudes. In a soft device the system
was not able to reach equilibrium within the experimental
time scale. Instead, it remained trapped in a quasistationary
(glassy) state because of the high energy barrier associated
with collective power stroke. Such kinetic trapping which
fits the pattern of two-stage dynamics exhibited by systems
with strong long range interactions [11,20] may explain the
failure to reach equilibrium in experiments reported in [9].
In the hard device case, the cooperation among the cross-
bridges is weaker and kinetics is much faster, allowing the
system to reach equilibrium at the experimental time scale.
A quantitative comparison of the rates obtained in our
simulations with experimental values (see Fig. 4) shows
that the RHS model reproduces the kinetic data in both
hard and soft ensembles rather well.
In conclusion, we mention that the prototypical nature of

our model implies that passive collective behavior should
be a property common to general cross-linked actomyosin
networks. We have shown that the degree of cooperativity
in such networks can be strongly affected by elastic stiff-
ness of the filaments. This suggests that a generic system of

FIG. 5. Phase diagram for the RHS model in a hard device with
z selected to ensure that hpi ¼ 1=2 at each point (�, �f). In the

shaded region, the function fðpÞ is nonconvex which leads to
coherent fluctuations. Outside this region, fluctuations are not
synchronized. The cross indicates an almost critical configura-
tion with realistic parameters (used in Fig. 4).

FIG. 6. Bifurcation diagram for the nonsymmetric RHS model
with realistic parameters: (a) hard device with z ¼ 0:37; (b) soft
device with t ¼ 0:21; this loading secures that hpi ¼ 1=2
for � ¼ 52. Parameters are as in Fig. 4. Inset (a) corresponds
to � ¼ 52, inset (b) to � ¼ 25.

FIG. 7. (a) States attainable during quick recovery: solid line,
T2; dotted line, L2; dashed line, L

qs
2 corresponds to quasistation-

ary states; dash-dotted line, T1 and L1. Symbols show experi-
mental points for hard (open) and soft (filled) devices; see [10].
In a hard device, the equilibrium T2 curve coincides with the
results of stochastic simulations. In a soft device, the equilibrium
L2 curve differs from the simulation results at 10 ms (L

qs
2 curve).

Averaged trajectories after abrupt loading at 1 ms: (b) in a hard
device and (c) in a soft device. Curve (1): �z ¼ �1 nm=hs;
curve (2): �z ¼ �5 nm=hs; curve (3): t=t0 ¼ 0:9; curve (4):
t=t0 ¼ 0:5 with t0 ¼ 0:21. Other parameters are as in Fig. 4.
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this type can be tuned to criticality by an actively generated
prestress [21].
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