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We calculate the phase diagram of the two component fractional quantum Hall effect as a function of

the spin or valley Zeeman energy and the filling factor, which reveals new phase transitions and phase

boundaries spanning many fractional plateaus. This phase diagram is relevant to the fractional quantum

Hall effect in graphene and in GaAs and AlAs quantum wells, when either the spin or valley degree of

freedom is active.
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The interplay between the Coulomb interaction and the
electron spin degree of freedom has led to an impressive
amount of physics in the fractional quantum Hall effect
(FQHE). Phase transitions have been observed as a func-
tion of the Zeeman splitting EZ in transport [1–6], optical
[7–10], and NMR experiments [11–15]. Recent years have
witnessed a remarkable resurgence of interest in multicom-
ponent FQHE due to the experimental observation of
FQHE in systems with both spin and valley degrees of
freedom, such as AlAs quantum wells [16–18], graphene
[19–21], and the H-terminated Si(111) surface [22]. These
enable new and more powerful methods of controlling the
relative strengths of the (spin or valley) ‘‘Zeeman’’ split-
ting and the interaction, thus opening the door into inves-
tigations of the physics of multicomponent FQHE states
over a broad range of parameters.

We consider FQHE for SU(2) electrons, applicable to
parameter regimes in which either the valley or the spin
degree of freedom is active. For simplicity, we will refer to
the two components generically as ‘‘spins.’’ Phase transi-
tions at the isolated filling factors � ¼ n=ð2pn� 1Þ, n and
p integers, were studied theoretically previously [23–27].
We obtain in this Letter the more complete EZ � �
phase diagram, which reveals many phase boundaries
arising from a competition between the Zeeman and the
Coulomb energies.

In the filling factor range of interest below, electrons
capture two vortices to transform into composite fermions
(CFs) [28–31]. Composite fermions fill �� Landau-like
levels called � levels (�Ls), where � and �� are related
by � ¼ ��=ð2�� � 1Þ. In general, ��

" spin-up and ��
# spin-

down �Ls are occupied, with �� ¼ ��
" þ ��

# . The corre-

sponding state, labeled (��
" , �

�
# ), has spin polarization P ¼

ð��
" � ��

# Þ=��. (We take below the convention ��
" � ��

# .)
Which state is favored is an energetic question that requires
a precise quantitative understanding of the various states.
We begin by making certain simplifying assumptions. We
will assume that only one of the �Ls is partially occupied,
so one of ��

" and ��
# is an integer and the other will be

written as jþ ��, where 0 � �� � 1 is the filling factor of

the partially filled �L. This assumption is valid for weakly
interacting composite fermions. We neglect the Skyrmion
physics [32]; as discussed below, it is not relevant at the
phase boundaries of interest in this work. We also neglect
disorder and Landau level (LL) mixing. Figure 1 schemati-
cally depicts all the states between 1=3 and 4=9 that we
have studied below.
To proceed further, we need a realistic model for the

state of composite fermions in the partially filled �L,
which is dictated by the weak residual interaction between
composite fermions. For small �� (small 1� ��), we expect
the formation of a crystal of CF particles (CF holes). We
will model the entire range 0< �� < 1 as a crystal, and, for
completeness, we will consider both the particle and hole
crystals for the entire range. The validity of various
approximations is discussed below.
With these assumptions, it is possible to formulate a

wave function for the FQHE state at � following standard
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FIG. 1 (color online). Schematic depiction of the states with
different polarizations in the filling factor range 1<��<2 (top),
2< �� < 3 (middle), and 3< �� < 4 (bottom). Composite fer-
mions are pictured as electrons carrying two arrows (represent-
ing bound vortices). The horizontal lines represent the CF �Ls,
with the spin-up�Ls on the left and spin-down �Ls on the right.
The states are labeled (��

" , �
�
# ); the filling factor of the partially

filled � level is ��.
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methods [28]. We first construct the wave function ��� of
electrons at ��:

��� ¼ A½���
" ;�

�
#
fz1; . . . ; zNgu1; . . . ; uN"dN"þ1; . . . ; dN�; (1)

���
" ;�

�
#
¼ ���

"
fz1; . . . ; zN" g���

#
fzN"þ1; . . . ; zNg: (2)

Here zj ¼ xj þ iyj denotes the position of an electron; u

and d are the up- and down-spin spinors, respectively; A
indicates antisymmetrization; and ���

"
and ���

#
are wave

functions of spin-up and spin-down electrons at ��
" and �

�
# ,

respectively. One of the two factors on the right-hand side
of Eq. (2) corresponds to integer filling and is thus a single
Slater determinant. We have two possible choices for the
other factor at filling jþ ��: (i) crystal of electrons on top of
j filled LLs or (ii) crystal of holes on top of jþ 1 filled
LLs. Because the Coulomb interaction commutes with
spin, the many-body eigenstates must be eigenstates of
~S2. For the states relevant to our current study (Fig. 1),
all occupied orbitals of spin-down electrons in ���

#
are

definitely occupied for spin-up electrons ���
"
; the product

wave function ���
" ;�

�
#
is therefore annihilated by the spin

raising operator. In other words, the wave function satisfies
the Fock condition [33], which guarantees that it is an

eigenstate of both Sz and ~S2 with S ¼ Sz.
We next composite-fermionize this wave function to

construct the trial wave functions for the FQHE state at �:

�� ¼ A½�CF
��
" ;�

�
#
fz1; . . . ; zNgu1; . . . ; uN"dN"þ1; . . . ; dN�; (3)

�CF
��
" ;�

�
#
¼ PLLL

YN

j<k¼1

ðzj � zkÞ2���
" ;�

�
#
: (4)

Here the Jastrow factor
QN

j<k¼1ðzj � zkÞ2 attaches two

vortices to each electron to convert it into a composite
fermion, and PLLL denotes lowest Landau level projection,
evaluated by using the method described in Ref. [34]. The
spin quantum numbers are preserved [29] under composite
fermionization, guaranteeing that the wave function ��

also has proper symmetry under rotation in spin space. The
determination of phase diagram requires an evaluation of
the interaction energy

E ¼ h��jVj��i
h��j��i ¼

h�CF
��" ;�

�
#
jVj�CF

��
" ;�

�
#
i

h�CF
��
" ;�

�
#
j�CF

��" ;�
�
#
i ; (5)

where V is the interaction, which will be evaluated by the
Metropolis Monte Carlo method.

We will use the spherical geometry [35] for our calcu-
lation, in which N electrons are confined to the surface of a
sphere with 2Q flux quanta passing through it. This ge-
ometry is convenient, as it has no complications due to
edges and enables a simple treatment of the interaction
with the background charge (taken as a single positive

charge at the center). A disadvantage appears, at first, to
be that a triangular crystal cannot be wrapped around a
sphere without creating defects. We overcome this by
exploiting Thomson’s famous plum pudding model of the
atom [36], wherein the locations of classical charged par-
ticles on a sphere are obtained by minimizing their
Coulomb energy. (These positions have been obtained by
powerful numerical techniques and tabulated in the litera-
ture [37].) As one may expect, this is essentially a trian-
gular crystal with a few defects introduced by the curvature
of the spherical surface. In the thermodynamic limit, one
expects the effect of the defects to be insignificant. We
study a system with N ¼ 84 particles for our calculations
below, varying the filling factor by considering different
possible values of 2Q. Our results represent the thermody-
namic limit, as seen by noting that the critical Zeeman
energies for 2=5, 3=7, and 4=9 agree with those obtained
previously by explicitly evaluating the thermodynamic
limit [24,26]. Technical details of the construction of the
CF particle and CF hole crystals in the spherical geometry
are given in the Supplemental Material [38].
Figure 2 shows the Coulomb energies of the various

states as a function of the filling factor in the range 1=3<
�< 4=9. The filled (open) symbols represent the energies
for states where the partially filled �L is modeled as a
crystal of CF particles (holes). (In the range 3=7< �<
4=9, only the CF particle crystal has been evaluated.). The
energy difference between the CF particle and hole crystals
for a given polarization P is small compared to that
between states with different polarizations. Figure 3
depicts the energy differences between two consecutive
states, where we take the lower of the particle or hole
crystal energies for a given spin polarization. From the
difference, it is straightforward to determine the critical
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FIG. 2 (color online). The energy per particle for various states
(��

" , �
�
# ) in the filling factor range 1< �� < 4. The energy E is

quoted in units of e2=�‘, where ‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=eB

p
is the magnetic

length and � is the dielectric constant of the host material, and
includes interaction with a uniform neutralizing background.
The dark (open) symbols correspond to states in which the
partially filled �L contains a crystal of CF particles (holes).
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EZ � �ðe2=�‘Þ for the various transitions, plotted in Fig. 4.
(In both Figs. 3 and 4, the curves have been smoothened to
eliminate fluctuations due to finite system size. The uncer-
tainty in the curves due to finite size effects is estimated to
be �� � 0:001.) The phase diagram in Fig. 4 is the main
result of our Letter.

A striking feature of the phase diagram is the presence of
lines that extend across many FQHE plateaus. For suffi-
ciently large �, the state is fully polarized at all fillings, as
expected. Interestingly, for a range of � values, the state at
two consecutive fractions along the sequences n=ð2nþ 1Þ
is fully spin polarized, but the state at intermediate fillings
is partially polarized. The measurements of Tiemann et al.
[15] clearly show such behavior where both 1=3 and 2=5
are fully spin polarized but the intermediate state is par-
tially polarized. The inset in Fig. 4 shows the spin polar-
ization P ¼ ð��

" � ��
# Þ=ð��

" þ ��
# Þ as a function of � for

several fixed values � (as would be the case when � is
varied by changing the density at a fixed B), indicating
complex �-dependent behavior. The blue triangles were
obtained previously in Ref. [24] and exhaust all spin po-
larization transitions at �� ¼ integer. These are now seen
to continue, as �� is varied, along phase boundaries that go
‘‘sideways’’ (as opposed to connecting the adjacent blue
triangles). Additional phase transitions also appear as �� is
varied away from integer values of ��, although they
involve only a small change in spin polarization close to
�� ¼ integer.

A free-CF model provides useful insight into the struc-
ture of the phase diagram. This model considers noninter-
acting composite fermions, with the CF cyclotron energy
taken as [2,7,11,24,29,30]

@!�
c ¼ me

m�
p

@!c

2�� � 1
� 1

�ð2�� � 1Þ
e2

�‘

at � ¼ ��=ð2�� � 1Þ, where !c ¼ eB=mec is the cyclo-
tron energy, me is the electron mass in vacuum, and m�

p is

the CF ‘‘polarization mass’’ [7,11,24]. (For GaAs

parameters, we havem�
p=me ¼ 0:026�

ffiffiffiffiffiffiffiffiffiffi
B½T�p

.) Phase tran-

sitions occur due to a competition between the CF cyclo-
tron energy and the Zeeman energy. From an elementary
calculation, this model predicts that the phase boundaries
between the different polarizations are given by EZ ¼
integer	 @!�

c:

� ¼ integer

�ð2�� � 1Þ ðfree-CFmodelÞ; (6)

where the integer goes from 1 to intð��Þ. We show the
phase diagram predicted by the free-CF model in Fig. 4
(thin lines), fixing � ¼ 15:9 by requiring coincidence at
the blue triangle at � ¼ 2=5. (The polarization mass is
known to be much larger than the ‘‘activation mass’’
relevant for transport experiments [7,11,24].) The free-
CF model reproduces certain qualitative features of the
phase diagram obtained from the microscopic theory.
We stress that the free-CF model with an effective mass
parameter should only be treated as providing an appro-
ximate intuitive interpretation of the accurate results
obtained from the microscopic calculation; the free-CF
model can sometimes fail qualitatively [25].
We have also studied the effect of finite thickness assum-

ing a cosine-shaped wave function in a square quantum
well, which leads to a width-dependent effective interac-
tion [38]. As an illustration, the phase diagram is also
shown (red dashed lines) for a quantum well of width
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FIG. 4 (color online). The calculated polarization phase dia-
gram of various states (��

" , �
�
# ) in the CF filling factor range 1<

�� < 4 (1=3< �< 4=9) as a function of � ¼ EZ=ðe2=�‘Þ. The
thick blue lines are for a system of zero thickness; the dashed red
lines correspond to a quantum well width of 40 nm for density
1011 cm�2; and thin green lines indicate the phase boundaries
predicated by a model of noninteracting composite fermions.
The blue triangles indicate the spin phase transitions at �� ¼ n
identified previously [24]. The yellow shade depicts the region
where Skyrmions are present, and the vertical blue shaded
regions depict fillings where transitions take place from one
fraction to the next. The inset shows the polarization P ¼ ð��

" �
��
# Þ=�� as a function of �� for fixed values of � ¼ 0:0225 (black

solid line), 0.0125 (purple crosses), and 0.005 (red circles), as
evaluated for a zero thickness sample.
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40 nm at a density of 1011 cm�2. Lower densities and
shorter widths produce a smaller deviation from the zero
width results.

We now discuss the validity of the assumptions made in
our calculation. (i) At � ¼ 0, the excitations of 1=3 are CF
analogs of the � ¼ 1 Skyrmions [32] and involve a macro-
scopic number of spin flips [39]. The Skyrmion size rapidly
shrinks with �, and quantitative estimates show [39] that
Skyrmions at 1=3 occur only for � < 0:007. Given that
there are no Skyrmion excitations for the spin singlet 2=5,
the Skyrmion region is roughly estimated to be that
shaded in yellow in Fig. 4. Here the phase will be a crystal
of Skyrmions [40], with a spin polarization less than
ð1� ��Þ=ð1þ ��Þ by an amount that depends sensitively
on �. The phase boundaries calculated above are not
affected by this physics, because they occur at relatively
high values of �where Skyrmions are not relevant. (ii) One
of our main assumptions has been to model the state in
the partially filled �L as a crystal. This should be accurate
for filling factors close to �� ¼ integer. How about other
phases of composite fermions, such as their stripes or
FQHE? For �� > 2, a FQHE of composite fermions is
unlikely, but a stripe phase is competitive [41]; near �� ¼
1=2, the energy per particle of the stripe phase is estimated
[41] to be below the crystal by
0:001e2=�‘ or less, which
is much smaller than the energy difference between states
with different polarizations, and will therefore not affect
the phase boundary obtained above significantly. The most
interesting region is 1< �� < 2 (1=3< �< 2=5), where
certain FQHE states such as 4=11, 5=13, and perhaps 3=8
are known to occur [42] in very pure samples. Inclusion of
these states will distort the phase boundary near these
fillings in interesting ways, but our theoretical understand-
ing of these states [43] is currently not at a level where
quantitative statements can be made. (iii) For graphene and
other multivalley systems, it will be important to consider
both the spin and valley indices to bring out the full physics
[19,44]. The present work is applicable when one of those
two degrees of freedom is frozen. (iv) Disorder, not
included above, will affect our results in several ways.
Most importantly, the first-order phase transitions at the
phase boundaries will turn into continuous percolation
transitions in the presence of disorder, producing extended
states that allow identification of the phase transition in
transport experiments (below). Disorder will also affect the
energies of the various states differently and thereby mod-
ify the phase boundaries. Finally, disorder will create
spatial variations in the filling factor, which will provide
a correction to the ‘‘ideal’’ polarization. For example,
while the ideal 1=3 state is fully spin polarized for all �,
disorder will slightly diminish P for � < 0:03. (v) LL
mixing should be small at large magnetic fields, but at
relatively low fields it will also influence the phase bounda-
ries, because it will affect dissimilarly polarized states
differently. LL mixing will affect the filling factor regions

0< �< 1 and 1< �< 2 differently. In the absence of
LL mixing, the latter region maps into 0< �< 1 holes
in the lowest Landau level, which have the same interac-
tion as electrons, and therefore the above physics applies
exactly (with composite fermions being bound states of
holes and vortices). In the presence of LL mixing, the
renormalization of the interaction by LL mixing will be
different for electrons and holes, and the quantitative
differences between the spin phase diagrams in the two
regions should serve as a useful test of our understanding
of the role of LL mixing. A reliable treatment of LL
mixing, however, is outside the scope of the present
work.
In light of the preceding paragraph, the phase diagram in

Fig. 4 is to be viewed as a first step. Further work will be
required for a more precise determination of the phase
boundaries. In particular, qualitative deviations from the
phase diagram in Fig. 4 will be indicative of the formation
of new correlated phases.
Transportmeasurements can identify the phase boundary

through an Rxx peak as a function of the EZ, which appears
because of the presence of extended states (due to disorder)
at the transition point. These Rxx peaks are flanked by two
states with the same quantized Hall resistance Rxy. (These

should be distinguished from the peaks at [45] �� ¼ nþ
1=2, shown schematically as vertical shaded regions in
Fig. 4, which indicate transitions between states with differ-
ent values of the Hall resistance.) Such peaks have been
seen in a number of experiments, both at the special frac-
tions � ¼ n=ð2n� 1Þ and slightly away from it [2,3,5,13].
Kraus et al. [13] have detected a sharp Rxx peak inside the
resistanceminima near 2=3 and 3=5 and determined a phase
boundary of the type calculated here, clearly delineating
states with various spin polarizations as a function of the
filling factor. Unfortunately, a technical difficulty in dealing
with reverse flux attachment makes the calculation of the
phase diagram along the sequence n=ð2n� 1Þ much more
challenging [23,27] and outside the scope of the present
work. However, the phase transition at 2=3 is found to occur
in Ref. [13] at 
10T; according to the free-CF model, this
corresponds to �
 19, which is in the same ballpark as the
value obtained above (and, in fact, somewhat higher, as
expected from finite width corrections). Resistance spikes
have also been observed at magnetic phase transitions in the
integer quantum Hall regime [46]. We also note that,
because the phase boundary involves a change of magneti-
zation, it should exhibit hysteretic behavior, as observed
previously [3,5,12,46].
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